Numerical Evaluation of Screening Current-Induced Magnetic Field Considering Variable Output Energy in REBCO Coil System of Skeleton Cyclotron for Cancer Therapy

Takamitsu Ogata, Kodai Shirai, Atsushi Ishiyama, Hiroshi Ueda, So Noguchi, Tomonori Watanabe, Shigeo Nagaya, Mitsuhiro Fukuda

Research output: Contribution to journalArticlepeer-review

Abstract

We have been developing a new-generation accelerator named 'Skeleton Cyclotron', which is an ultra-compact and high-intensity accelerator for the stable production of 211At used for targeted alpha-particle therapy. Coil system for Skeleton Cyclotron consists of circular and noncircular high-temperature superconducting magnets and it can cause the output energy to vary without being bounded by the non-linearity of the iron core. This will enable not only the production of 211At, but also the production of radioisotopes for positron emission tomography and neutron irradiation for boron neutron capture therapy with a single accelerator. A high-precision magnetic field distribution and a high temporal stability are required for stable beam acceleration, but the screening current, which is induced in the REBa2Cu3Ox (REBCO, RE: Rare Earth) coated conductor, generates an irregular magnetic field and deteriorates the quality of the magnetic field spatially and temporally. In this study, we numerically evaluated the temporal stability and reproducibility of the screening current-induced field considering the variable energy operation for the Ultra-Baby Skeleton Cyclotron, which is a small demonstration model of Skeleton Cyclotron.

Original languageEnglish
Article number9354981
JournalIEEE Transactions on Applied Superconductivity
Volume31
Issue number5
DOIs
Publication statusAccepted/In press - 2021

Keywords

  • Cyclotrons
  • high-temperature superconductors
  • nuclear medicine
  • superconducting magnets

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Numerical Evaluation of Screening Current-Induced Magnetic Field Considering Variable Output Energy in REBCO Coil System of Skeleton Cyclotron for Cancer Therapy'. Together they form a unique fingerprint.

Cite this