Novel angiogenic inhibitor DN-9693 that inhibits post-transcriptional induction of connective tissue growth factor (CTGF/CCN2) by vascular endothelial growth factor in human endothelial cells

Seiji Kondo, Noriko Tanaka, Satoshi Kubota, Yoshiki Mukudai, Gen Yosimichi, Masaharu Takigawa

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Connective tissue growth factor (CTGF/CCN2) is a potent angiogenic factor. In this report, we describe for the first time that vascular endothelial growth factor (VEGF)-mediated induction of the ctgf/ccn2 gene was a post-transcriptional event that was inhibited by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells. Steady-state mRNA levels of ctgf/ccn2 were remarkably increased by VEGF in a concentration-dependent manner, whereas the activity of the ctgf/ccn2 promoter was not responsive to VEGF as confirmed by a reporter gene assay and quantitative real-time PCR analysis. By employing a RNA degradation assay, we eventually found that the observed increase in the ctgf/ccn2 mRNA level was due to an increased stability of the mRNA induced by VEGF. DN-9693 at a dose of 0.1 to 2 ng/mL did not affect basal levels of ctgf/ccn2 mRNA; however, enhancement of ctgf/ccn2 mRNA expression by VEGF was specifically inhibited by DN-9693. Of importance, the inhibitory effects could be also ascribed to post-transcriptional regulation, because the VEGF-mediated increase in stability of ctgf/ccn2 mRNA was suppressed by DN-9693. Furthermore, we investigated the effects of DN-9693 on VEGF-induced activation of three subgroups of mitogen-activated protein kinase pathways and found that DN-9693 blocked the activation of these pathways by VEGF. These results suggest that VEGF increases ctgf/ccn2 mRNA stability through mitogen-activated protein kinase-mediated intracellular signaling cascade(s), which can be inhibited posttranscriptionally by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells.

Original languageEnglish
Pages (from-to)129-137
Number of pages9
JournalMolecular Cancer Therapeutics
Volume5
Issue number1
DOIs
Publication statusPublished - Jan 2006

Fingerprint

Connective Tissue Growth Factor
Angiogenesis Inhibitors
Vascular Endothelial Growth Factor A
Endothelial Cells
RNA Stability
Messenger RNA
Human Umbilical Vein Endothelial Cells
Mitogen-Activated Protein Kinases
1,5-dihydro-7-(1-piperidinyl)-imidazo(2,1-b)quinazolin-2(3H)-one
human VEGFA protein
Angiogenesis Inducing Agents
Reporter Genes
Real-Time Polymerase Chain Reaction

ASJC Scopus subject areas

  • Oncology
  • Drug Discovery
  • Pharmacology

Cite this

@article{bb3e32de3a904bb3b230a270cc89ecbf,
title = "Novel angiogenic inhibitor DN-9693 that inhibits post-transcriptional induction of connective tissue growth factor (CTGF/CCN2) by vascular endothelial growth factor in human endothelial cells",
abstract = "Connective tissue growth factor (CTGF/CCN2) is a potent angiogenic factor. In this report, we describe for the first time that vascular endothelial growth factor (VEGF)-mediated induction of the ctgf/ccn2 gene was a post-transcriptional event that was inhibited by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells. Steady-state mRNA levels of ctgf/ccn2 were remarkably increased by VEGF in a concentration-dependent manner, whereas the activity of the ctgf/ccn2 promoter was not responsive to VEGF as confirmed by a reporter gene assay and quantitative real-time PCR analysis. By employing a RNA degradation assay, we eventually found that the observed increase in the ctgf/ccn2 mRNA level was due to an increased stability of the mRNA induced by VEGF. DN-9693 at a dose of 0.1 to 2 ng/mL did not affect basal levels of ctgf/ccn2 mRNA; however, enhancement of ctgf/ccn2 mRNA expression by VEGF was specifically inhibited by DN-9693. Of importance, the inhibitory effects could be also ascribed to post-transcriptional regulation, because the VEGF-mediated increase in stability of ctgf/ccn2 mRNA was suppressed by DN-9693. Furthermore, we investigated the effects of DN-9693 on VEGF-induced activation of three subgroups of mitogen-activated protein kinase pathways and found that DN-9693 blocked the activation of these pathways by VEGF. These results suggest that VEGF increases ctgf/ccn2 mRNA stability through mitogen-activated protein kinase-mediated intracellular signaling cascade(s), which can be inhibited posttranscriptionally by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells.",
author = "Seiji Kondo and Noriko Tanaka and Satoshi Kubota and Yoshiki Mukudai and Gen Yosimichi and Masaharu Takigawa",
year = "2006",
month = "1",
doi = "10.1158/1535-7163.MCT-05-0097",
language = "English",
volume = "5",
pages = "129--137",
journal = "Molecular Cancer Therapeutics",
issn = "1535-7163",
publisher = "American Association for Cancer Research Inc.",
number = "1",

}

TY - JOUR

T1 - Novel angiogenic inhibitor DN-9693 that inhibits post-transcriptional induction of connective tissue growth factor (CTGF/CCN2) by vascular endothelial growth factor in human endothelial cells

AU - Kondo, Seiji

AU - Tanaka, Noriko

AU - Kubota, Satoshi

AU - Mukudai, Yoshiki

AU - Yosimichi, Gen

AU - Takigawa, Masaharu

PY - 2006/1

Y1 - 2006/1

N2 - Connective tissue growth factor (CTGF/CCN2) is a potent angiogenic factor. In this report, we describe for the first time that vascular endothelial growth factor (VEGF)-mediated induction of the ctgf/ccn2 gene was a post-transcriptional event that was inhibited by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells. Steady-state mRNA levels of ctgf/ccn2 were remarkably increased by VEGF in a concentration-dependent manner, whereas the activity of the ctgf/ccn2 promoter was not responsive to VEGF as confirmed by a reporter gene assay and quantitative real-time PCR analysis. By employing a RNA degradation assay, we eventually found that the observed increase in the ctgf/ccn2 mRNA level was due to an increased stability of the mRNA induced by VEGF. DN-9693 at a dose of 0.1 to 2 ng/mL did not affect basal levels of ctgf/ccn2 mRNA; however, enhancement of ctgf/ccn2 mRNA expression by VEGF was specifically inhibited by DN-9693. Of importance, the inhibitory effects could be also ascribed to post-transcriptional regulation, because the VEGF-mediated increase in stability of ctgf/ccn2 mRNA was suppressed by DN-9693. Furthermore, we investigated the effects of DN-9693 on VEGF-induced activation of three subgroups of mitogen-activated protein kinase pathways and found that DN-9693 blocked the activation of these pathways by VEGF. These results suggest that VEGF increases ctgf/ccn2 mRNA stability through mitogen-activated protein kinase-mediated intracellular signaling cascade(s), which can be inhibited posttranscriptionally by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells.

AB - Connective tissue growth factor (CTGF/CCN2) is a potent angiogenic factor. In this report, we describe for the first time that vascular endothelial growth factor (VEGF)-mediated induction of the ctgf/ccn2 gene was a post-transcriptional event that was inhibited by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells. Steady-state mRNA levels of ctgf/ccn2 were remarkably increased by VEGF in a concentration-dependent manner, whereas the activity of the ctgf/ccn2 promoter was not responsive to VEGF as confirmed by a reporter gene assay and quantitative real-time PCR analysis. By employing a RNA degradation assay, we eventually found that the observed increase in the ctgf/ccn2 mRNA level was due to an increased stability of the mRNA induced by VEGF. DN-9693 at a dose of 0.1 to 2 ng/mL did not affect basal levels of ctgf/ccn2 mRNA; however, enhancement of ctgf/ccn2 mRNA expression by VEGF was specifically inhibited by DN-9693. Of importance, the inhibitory effects could be also ascribed to post-transcriptional regulation, because the VEGF-mediated increase in stability of ctgf/ccn2 mRNA was suppressed by DN-9693. Furthermore, we investigated the effects of DN-9693 on VEGF-induced activation of three subgroups of mitogen-activated protein kinase pathways and found that DN-9693 blocked the activation of these pathways by VEGF. These results suggest that VEGF increases ctgf/ccn2 mRNA stability through mitogen-activated protein kinase-mediated intracellular signaling cascade(s), which can be inhibited posttranscriptionally by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells.

UR - http://www.scopus.com/inward/record.url?scp=33644870698&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33644870698&partnerID=8YFLogxK

U2 - 10.1158/1535-7163.MCT-05-0097

DO - 10.1158/1535-7163.MCT-05-0097

M3 - Article

VL - 5

SP - 129

EP - 137

JO - Molecular Cancer Therapeutics

JF - Molecular Cancer Therapeutics

SN - 1535-7163

IS - 1

ER -