Novel [3H]clonidine binding sites in the intestine of the eel acclimated to sea water

Hung Tae Kim, Tatsuya Sakamoto, Masaaki Ando

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Novel clonidine binding sites were characterized in the intestinal membrane isolated from seawater eels. The specific clonidine binding sites consisted of at least two classes, high affinity (Kd = 1.4 ± 0.3 nM, n = 5) and low affinity (Kd = 175 ± 34 nM, n = 5) sites. The specific binding of 2 nM [3H]clonidine was most enhanced at 20°C and at pH 7.5, and reversed by unlabelled clonidine. Such binding was hardly inhibited by adrenaline, yohimbine or rauwolscine, indicating that most binding sites are distinct from α2-adrenoceptor. The specific clonidine binding was inhibited by various imidazoline/guanidinium drugs, indicating existence of imidazoline/guanidinium receptive sites (IGRS) or imidazoline receptors in the eel intestine. Competition experiments revealed that rank order to displace 2 nM [3H]clonidine from their binding sites was as follows: guanabenz > cirazoline = naphazoline = UK14304 = ST587 ≥ clonidine ≥ idazoxan = RX821002 = tolazoline > ST93 = oxymetazoline = amiloride = ST91 > yohimbine = efaroxan = rauwolscine ≥ adrenaline = ST567 = histamine = agmatine. The rank order was different from those in I1 or I2 sites of IGRS reported in various mammalian tissues, suggesting existence of new IGRS, non I1 and non I2 sites, in the eel intestine. In addition, structure-affinity relationships are discussed from the results of competition experiments. Although physiological role of IGRS is not clear yet even in mammalian cells/tissues, eel intestine may be a good model to elucidate how the IGRS act in the cell and to decide what is the endogenous ligand for the IGRS, since eel intestine contains great amount of IGRS and it responds to guanabenz, an exogenous clonidine derivative.

Original languageEnglish
Pages (from-to)205-212
Number of pages8
JournalZoological Science
Volume15
Issue number2
Publication statusPublished - Apr 1998
Externally publishedYes

Fingerprint

clonidine
eel
binding sites
intestines
seawater
yohimbine
epinephrine
agmatine
guanidinium
adrenergic receptors
histamine
chemical derivatives
cells
drugs
receptors

ASJC Scopus subject areas

  • Animal Science and Zoology

Cite this

Novel [3H]clonidine binding sites in the intestine of the eel acclimated to sea water. / Kim, Hung Tae; Sakamoto, Tatsuya; Ando, Masaaki.

In: Zoological Science, Vol. 15, No. 2, 04.1998, p. 205-212.

Research output: Contribution to journalArticle

@article{9908efdecd2e4adabbfa3f0054062ac8,
title = "Novel [3H]clonidine binding sites in the intestine of the eel acclimated to sea water",
abstract = "Novel clonidine binding sites were characterized in the intestinal membrane isolated from seawater eels. The specific clonidine binding sites consisted of at least two classes, high affinity (Kd = 1.4 ± 0.3 nM, n = 5) and low affinity (Kd = 175 ± 34 nM, n = 5) sites. The specific binding of 2 nM [3H]clonidine was most enhanced at 20°C and at pH 7.5, and reversed by unlabelled clonidine. Such binding was hardly inhibited by adrenaline, yohimbine or rauwolscine, indicating that most binding sites are distinct from α2-adrenoceptor. The specific clonidine binding was inhibited by various imidazoline/guanidinium drugs, indicating existence of imidazoline/guanidinium receptive sites (IGRS) or imidazoline receptors in the eel intestine. Competition experiments revealed that rank order to displace 2 nM [3H]clonidine from their binding sites was as follows: guanabenz > cirazoline = naphazoline = UK14304 = ST587 ≥ clonidine ≥ idazoxan = RX821002 = tolazoline > ST93 = oxymetazoline = amiloride = ST91 > yohimbine = efaroxan = rauwolscine ≥ adrenaline = ST567 = histamine = agmatine. The rank order was different from those in I1 or I2 sites of IGRS reported in various mammalian tissues, suggesting existence of new IGRS, non I1 and non I2 sites, in the eel intestine. In addition, structure-affinity relationships are discussed from the results of competition experiments. Although physiological role of IGRS is not clear yet even in mammalian cells/tissues, eel intestine may be a good model to elucidate how the IGRS act in the cell and to decide what is the endogenous ligand for the IGRS, since eel intestine contains great amount of IGRS and it responds to guanabenz, an exogenous clonidine derivative.",
author = "Kim, {Hung Tae} and Tatsuya Sakamoto and Masaaki Ando",
year = "1998",
month = "4",
language = "English",
volume = "15",
pages = "205--212",
journal = "Zoological Science",
issn = "0289-0003",
publisher = "Zoological Society of Japan",
number = "2",

}

TY - JOUR

T1 - Novel [3H]clonidine binding sites in the intestine of the eel acclimated to sea water

AU - Kim, Hung Tae

AU - Sakamoto, Tatsuya

AU - Ando, Masaaki

PY - 1998/4

Y1 - 1998/4

N2 - Novel clonidine binding sites were characterized in the intestinal membrane isolated from seawater eels. The specific clonidine binding sites consisted of at least two classes, high affinity (Kd = 1.4 ± 0.3 nM, n = 5) and low affinity (Kd = 175 ± 34 nM, n = 5) sites. The specific binding of 2 nM [3H]clonidine was most enhanced at 20°C and at pH 7.5, and reversed by unlabelled clonidine. Such binding was hardly inhibited by adrenaline, yohimbine or rauwolscine, indicating that most binding sites are distinct from α2-adrenoceptor. The specific clonidine binding was inhibited by various imidazoline/guanidinium drugs, indicating existence of imidazoline/guanidinium receptive sites (IGRS) or imidazoline receptors in the eel intestine. Competition experiments revealed that rank order to displace 2 nM [3H]clonidine from their binding sites was as follows: guanabenz > cirazoline = naphazoline = UK14304 = ST587 ≥ clonidine ≥ idazoxan = RX821002 = tolazoline > ST93 = oxymetazoline = amiloride = ST91 > yohimbine = efaroxan = rauwolscine ≥ adrenaline = ST567 = histamine = agmatine. The rank order was different from those in I1 or I2 sites of IGRS reported in various mammalian tissues, suggesting existence of new IGRS, non I1 and non I2 sites, in the eel intestine. In addition, structure-affinity relationships are discussed from the results of competition experiments. Although physiological role of IGRS is not clear yet even in mammalian cells/tissues, eel intestine may be a good model to elucidate how the IGRS act in the cell and to decide what is the endogenous ligand for the IGRS, since eel intestine contains great amount of IGRS and it responds to guanabenz, an exogenous clonidine derivative.

AB - Novel clonidine binding sites were characterized in the intestinal membrane isolated from seawater eels. The specific clonidine binding sites consisted of at least two classes, high affinity (Kd = 1.4 ± 0.3 nM, n = 5) and low affinity (Kd = 175 ± 34 nM, n = 5) sites. The specific binding of 2 nM [3H]clonidine was most enhanced at 20°C and at pH 7.5, and reversed by unlabelled clonidine. Such binding was hardly inhibited by adrenaline, yohimbine or rauwolscine, indicating that most binding sites are distinct from α2-adrenoceptor. The specific clonidine binding was inhibited by various imidazoline/guanidinium drugs, indicating existence of imidazoline/guanidinium receptive sites (IGRS) or imidazoline receptors in the eel intestine. Competition experiments revealed that rank order to displace 2 nM [3H]clonidine from their binding sites was as follows: guanabenz > cirazoline = naphazoline = UK14304 = ST587 ≥ clonidine ≥ idazoxan = RX821002 = tolazoline > ST93 = oxymetazoline = amiloride = ST91 > yohimbine = efaroxan = rauwolscine ≥ adrenaline = ST567 = histamine = agmatine. The rank order was different from those in I1 or I2 sites of IGRS reported in various mammalian tissues, suggesting existence of new IGRS, non I1 and non I2 sites, in the eel intestine. In addition, structure-affinity relationships are discussed from the results of competition experiments. Although physiological role of IGRS is not clear yet even in mammalian cells/tissues, eel intestine may be a good model to elucidate how the IGRS act in the cell and to decide what is the endogenous ligand for the IGRS, since eel intestine contains great amount of IGRS and it responds to guanabenz, an exogenous clonidine derivative.

UR - http://www.scopus.com/inward/record.url?scp=0032393077&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032393077&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0032393077

VL - 15

SP - 205

EP - 212

JO - Zoological Science

JF - Zoological Science

SN - 0289-0003

IS - 2

ER -