Nonmagnetic impurity effect in vortex states of chiral superconductors

Takahiro Ueda, Yasuaki Sera, Hiroto Adachi, Masanori Ichioka

    Research output: Contribution to journalArticlepeer-review


    Nonmagnetic impurity scattering effects in the vortex states are studied in the Born and the unitary limits for chiral superconductors by Eilenberger theory. We compare the spatial structure of the pair potential and local electronic structure in chiral p-wave superconductors with those in two types of chiral d-wave superconductors; d1±dxz±idyz and d2±dx2-y2±idxy pairing. Similar behaviors of the pair potentials are seen in p±- and d1±-wave superconductors. In chiral d-wave superconductors, due to lack of Majorana properties relating to the s-wave Cooper pair amplitude, zero-energy vortex bound states are easily destroyed by the impurity scattering, compared to the Born limit in the chiral p - wave superconductors. This decay is also seen in the unitary limit in the chiral p - wave superconductors. These differences are also discussed in the relation to s-wave Cooper pair amplitude and the local scattering rate. The impurity effects are also compared with those in s-wave superconductors.

    Original languageEnglish
    Article number014506
    JournalPhysical Review B
    Issue number1
    Publication statusPublished - Jan 8 2021

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Condensed Matter Physics


    Dive into the research topics of 'Nonmagnetic impurity effect in vortex states of chiral superconductors'. Together they form a unique fingerprint.

    Cite this