Noncommutative resolutions using syzygies

Hailong Dao, Osamu Iyama, Srikanth B. Iyengar, Ryo Takahashi, Michael Wemyss, Yuji Yoshino

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Given a noether algebra with a noncommutative resolution, a general construction of new noncommutative resolutions is given. As an application, it is proved that any finite length module over a regular local or polynomial ring gives rise, via suitable syzygies, to a noncommutative resolution.

Original languageEnglish
JournalBulletin of the London Mathematical Society
DOIs
Publication statusAccepted/In press - Jan 1 2018

Fingerprint

Syzygies
Regular Local Ring
Noether
Polynomial ring
Module
Algebra

Keywords

  • 13D05
  • 14A22
  • 16G30 (primary)

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Noncommutative resolutions using syzygies. / Dao, Hailong; Iyama, Osamu; Iyengar, Srikanth B.; Takahashi, Ryo; Wemyss, Michael; Yoshino, Yuji.

In: Bulletin of the London Mathematical Society, 01.01.2018.

Research output: Contribution to journalArticle

Dao, Hailong ; Iyama, Osamu ; Iyengar, Srikanth B. ; Takahashi, Ryo ; Wemyss, Michael ; Yoshino, Yuji. / Noncommutative resolutions using syzygies. In: Bulletin of the London Mathematical Society. 2018.
@article{47f3e1bb68cc4edaa96dc43e41a0e706,
title = "Noncommutative resolutions using syzygies",
abstract = "Given a noether algebra with a noncommutative resolution, a general construction of new noncommutative resolutions is given. As an application, it is proved that any finite length module over a regular local or polynomial ring gives rise, via suitable syzygies, to a noncommutative resolution.",
keywords = "13D05, 14A22, 16G30 (primary)",
author = "Hailong Dao and Osamu Iyama and Iyengar, {Srikanth B.} and Ryo Takahashi and Michael Wemyss and Yuji Yoshino",
year = "2018",
month = "1",
day = "1",
doi = "10.1112/blms.12210",
language = "English",
journal = "Bulletin of the London Mathematical Society",
issn = "0024-6093",
publisher = "Oxford University Press",

}

TY - JOUR

T1 - Noncommutative resolutions using syzygies

AU - Dao, Hailong

AU - Iyama, Osamu

AU - Iyengar, Srikanth B.

AU - Takahashi, Ryo

AU - Wemyss, Michael

AU - Yoshino, Yuji

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Given a noether algebra with a noncommutative resolution, a general construction of new noncommutative resolutions is given. As an application, it is proved that any finite length module over a regular local or polynomial ring gives rise, via suitable syzygies, to a noncommutative resolution.

AB - Given a noether algebra with a noncommutative resolution, a general construction of new noncommutative resolutions is given. As an application, it is proved that any finite length module over a regular local or polynomial ring gives rise, via suitable syzygies, to a noncommutative resolution.

KW - 13D05

KW - 14A22

KW - 16G30 (primary)

UR - http://www.scopus.com/inward/record.url?scp=85055674358&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85055674358&partnerID=8YFLogxK

U2 - 10.1112/blms.12210

DO - 10.1112/blms.12210

M3 - Article

JO - Bulletin of the London Mathematical Society

JF - Bulletin of the London Mathematical Society

SN - 0024-6093

ER -