NO2-assisted molecular-beam epitaxy of Fe3O4, Fe3-δO4, and γ-Fe2O3 thin films on MgO(100)

F. C. Voogt, Tatsuo Fujii, P. J M Smulders, L. Niesen, M. A. James, T. Hibma

Research output: Contribution to journalArticle

128 Citations (Scopus)

Abstract

We report on the molecular beam epitaxial growth of single-crystalline, stoichiometric Fe3O4 and γ-Fe2O3 films on MgO(100), using NO2 as the oxidizing agent. Mössbauer spectroscopy on 57Fe probe layers is used to determine accurately the stoichiometry of the films. It is found that also all intermediate nonstoichiometric Fe3-δO4 phases can be obtained. The formation of the metastable compound γ-Fe2O3 clearly demonstrates the large oxidizing power of NO2. Although the shape anisotropy dictates that the zero-field magnetization direction should lie entirely in the plane of the film, this is never observed. Stoichiometric Fe3O4 has large out-of-plane components and only in the case of highly oxidized Fe3-δO4 does the magnetization approach the film plane. Upon further oxidation to stoichiometric γ-Fe2O3, however, it rotates back, and finally becomes almost completely perpendicular to the plane of the film. Furthermore, in the case of (near-) stoichiometric Fe3O4, the magnetizations of the A and B sublattices are not completely coupled antiparallel. On average, the magnetization of the B site ions is 4° closer to the film plane than the magnetization of the A site ions. All the as-grown films exhibit a (√2x √2)R45° surface reconstruction, independent of the stoichiometry. Using simple electrostatic considerations, we propose three possible surface terminations: a half-filled A layer, a B layer with oxygen vacancies and a B layer with hydroxyl groups. Upon annealing, the (√2x √2)R45° reconstruction irreversibly transforms to a 3x1 reconstruction, caused by Mg outdiffusion from the substrate. Strong reflection high-energy electron diffraction intensity oscillations give direct, unambiguous evidence that Fe3O4 has a two-dimensional layer-by-layer growth mode over the entire temperature range studied, i.e., from 273 to 723 K, guaranteeing atomically flat surfaces and interfaces in multilayer structures. The largest oscillations are obtained on ex situ cleaved, UHV-annealed MgO(100) substrates, or on in situ annealed Fe3O4/MgO(100) films. Deposition above ∼700 K is accompanied by rapid Mg outdiffusion.

Original languageEnglish
Pages (from-to)11193-11206
Number of pages14
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume60
Issue number15
Publication statusPublished - 1999

Fingerprint

Molecular beam epitaxy
molecular beam epitaxy
Thin films
Magnetization
thin films
magnetization
Stoichiometry
stoichiometry
Ions
oscillations
Reflection high energy electron diffraction
Molecular beams
Surface reconstruction
Substrates
Oxygen vacancies
Epitaxial growth
Oxidants
Hydroxyl Radical
high energy electrons
sublattices

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

NO2-assisted molecular-beam epitaxy of Fe3O4, Fe3-δO4, and γ-Fe2O3 thin films on MgO(100). / Voogt, F. C.; Fujii, Tatsuo; Smulders, P. J M; Niesen, L.; James, M. A.; Hibma, T.

In: Physical Review B - Condensed Matter and Materials Physics, Vol. 60, No. 15, 1999, p. 11193-11206.

Research output: Contribution to journalArticle

Voogt, F. C. ; Fujii, Tatsuo ; Smulders, P. J M ; Niesen, L. ; James, M. A. ; Hibma, T. / NO2-assisted molecular-beam epitaxy of Fe3O4, Fe3-δO4, and γ-Fe2O3 thin films on MgO(100). In: Physical Review B - Condensed Matter and Materials Physics. 1999 ; Vol. 60, No. 15. pp. 11193-11206.
@article{d91c36247b73433585d5cf967d2fa10e,
title = "NO2-assisted molecular-beam epitaxy of Fe3O4, Fe3-δO4, and γ-Fe2O3 thin films on MgO(100)",
abstract = "We report on the molecular beam epitaxial growth of single-crystalline, stoichiometric Fe3O4 and γ-Fe2O3 films on MgO(100), using NO2 as the oxidizing agent. M{\"o}ssbauer spectroscopy on 57Fe probe layers is used to determine accurately the stoichiometry of the films. It is found that also all intermediate nonstoichiometric Fe3-δO4 phases can be obtained. The formation of the metastable compound γ-Fe2O3 clearly demonstrates the large oxidizing power of NO2. Although the shape anisotropy dictates that the zero-field magnetization direction should lie entirely in the plane of the film, this is never observed. Stoichiometric Fe3O4 has large out-of-plane components and only in the case of highly oxidized Fe3-δO4 does the magnetization approach the film plane. Upon further oxidation to stoichiometric γ-Fe2O3, however, it rotates back, and finally becomes almost completely perpendicular to the plane of the film. Furthermore, in the case of (near-) stoichiometric Fe3O4, the magnetizations of the A and B sublattices are not completely coupled antiparallel. On average, the magnetization of the B site ions is 4° closer to the film plane than the magnetization of the A site ions. All the as-grown films exhibit a (√2x √2)R45° surface reconstruction, independent of the stoichiometry. Using simple electrostatic considerations, we propose three possible surface terminations: a half-filled A layer, a B layer with oxygen vacancies and a B layer with hydroxyl groups. Upon annealing, the (√2x √2)R45° reconstruction irreversibly transforms to a 3x1 reconstruction, caused by Mg outdiffusion from the substrate. Strong reflection high-energy electron diffraction intensity oscillations give direct, unambiguous evidence that Fe3O4 has a two-dimensional layer-by-layer growth mode over the entire temperature range studied, i.e., from 273 to 723 K, guaranteeing atomically flat surfaces and interfaces in multilayer structures. The largest oscillations are obtained on ex situ cleaved, UHV-annealed MgO(100) substrates, or on in situ annealed Fe3O4/MgO(100) films. Deposition above ∼700 K is accompanied by rapid Mg outdiffusion.",
author = "Voogt, {F. C.} and Tatsuo Fujii and Smulders, {P. J M} and L. Niesen and James, {M. A.} and T. Hibma",
year = "1999",
language = "English",
volume = "60",
pages = "11193--11206",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "15",

}

TY - JOUR

T1 - NO2-assisted molecular-beam epitaxy of Fe3O4, Fe3-δO4, and γ-Fe2O3 thin films on MgO(100)

AU - Voogt, F. C.

AU - Fujii, Tatsuo

AU - Smulders, P. J M

AU - Niesen, L.

AU - James, M. A.

AU - Hibma, T.

PY - 1999

Y1 - 1999

N2 - We report on the molecular beam epitaxial growth of single-crystalline, stoichiometric Fe3O4 and γ-Fe2O3 films on MgO(100), using NO2 as the oxidizing agent. Mössbauer spectroscopy on 57Fe probe layers is used to determine accurately the stoichiometry of the films. It is found that also all intermediate nonstoichiometric Fe3-δO4 phases can be obtained. The formation of the metastable compound γ-Fe2O3 clearly demonstrates the large oxidizing power of NO2. Although the shape anisotropy dictates that the zero-field magnetization direction should lie entirely in the plane of the film, this is never observed. Stoichiometric Fe3O4 has large out-of-plane components and only in the case of highly oxidized Fe3-δO4 does the magnetization approach the film plane. Upon further oxidation to stoichiometric γ-Fe2O3, however, it rotates back, and finally becomes almost completely perpendicular to the plane of the film. Furthermore, in the case of (near-) stoichiometric Fe3O4, the magnetizations of the A and B sublattices are not completely coupled antiparallel. On average, the magnetization of the B site ions is 4° closer to the film plane than the magnetization of the A site ions. All the as-grown films exhibit a (√2x √2)R45° surface reconstruction, independent of the stoichiometry. Using simple electrostatic considerations, we propose three possible surface terminations: a half-filled A layer, a B layer with oxygen vacancies and a B layer with hydroxyl groups. Upon annealing, the (√2x √2)R45° reconstruction irreversibly transforms to a 3x1 reconstruction, caused by Mg outdiffusion from the substrate. Strong reflection high-energy electron diffraction intensity oscillations give direct, unambiguous evidence that Fe3O4 has a two-dimensional layer-by-layer growth mode over the entire temperature range studied, i.e., from 273 to 723 K, guaranteeing atomically flat surfaces and interfaces in multilayer structures. The largest oscillations are obtained on ex situ cleaved, UHV-annealed MgO(100) substrates, or on in situ annealed Fe3O4/MgO(100) films. Deposition above ∼700 K is accompanied by rapid Mg outdiffusion.

AB - We report on the molecular beam epitaxial growth of single-crystalline, stoichiometric Fe3O4 and γ-Fe2O3 films on MgO(100), using NO2 as the oxidizing agent. Mössbauer spectroscopy on 57Fe probe layers is used to determine accurately the stoichiometry of the films. It is found that also all intermediate nonstoichiometric Fe3-δO4 phases can be obtained. The formation of the metastable compound γ-Fe2O3 clearly demonstrates the large oxidizing power of NO2. Although the shape anisotropy dictates that the zero-field magnetization direction should lie entirely in the plane of the film, this is never observed. Stoichiometric Fe3O4 has large out-of-plane components and only in the case of highly oxidized Fe3-δO4 does the magnetization approach the film plane. Upon further oxidation to stoichiometric γ-Fe2O3, however, it rotates back, and finally becomes almost completely perpendicular to the plane of the film. Furthermore, in the case of (near-) stoichiometric Fe3O4, the magnetizations of the A and B sublattices are not completely coupled antiparallel. On average, the magnetization of the B site ions is 4° closer to the film plane than the magnetization of the A site ions. All the as-grown films exhibit a (√2x √2)R45° surface reconstruction, independent of the stoichiometry. Using simple electrostatic considerations, we propose three possible surface terminations: a half-filled A layer, a B layer with oxygen vacancies and a B layer with hydroxyl groups. Upon annealing, the (√2x √2)R45° reconstruction irreversibly transforms to a 3x1 reconstruction, caused by Mg outdiffusion from the substrate. Strong reflection high-energy electron diffraction intensity oscillations give direct, unambiguous evidence that Fe3O4 has a two-dimensional layer-by-layer growth mode over the entire temperature range studied, i.e., from 273 to 723 K, guaranteeing atomically flat surfaces and interfaces in multilayer structures. The largest oscillations are obtained on ex situ cleaved, UHV-annealed MgO(100) substrates, or on in situ annealed Fe3O4/MgO(100) films. Deposition above ∼700 K is accompanied by rapid Mg outdiffusion.

UR - http://www.scopus.com/inward/record.url?scp=0000578025&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000578025&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000578025

VL - 60

SP - 11193

EP - 11206

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 15

ER -