Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: Partial characterization and separation from interleukin 1 (IL 1)

T. Yoshimura, K. Matsushima, J. J. Oppenheim, E. J. Leonard

Research output: Contribution to journalArticlepeer-review

444 Citations (Scopus)

Abstract

LPS stimulated human blood mononuclear leukocytes to produce a chemotactic factor for human neutrophils. The effect of LPS was dose-dependent; 10 μg/ml was optimal for production of chemotactic factor. Chemotactic activity was detected 3 hr after LPS stimulation, and reached its peak at 12 hr. No activity was detected in culture supernatants of unstimulated cells, provided LPS-free media were selected. Isoelectric point of the factor, determined by chromatofocusing, was approximately 8 to 8.5. Molecular weight was approximately 10 kilodaltons by Sephacryl S-200 gel filtration or by HPLC gel filtration on TSK-2000 and -3000 columns in succession. The gel filtration fractions were also assayed for IL 1 activity. The elution position of IL 1 activity corresponded to a m.w. of 18. There was no chemotactic activity in the IL 1 activity peak. Furthermore, highly purified natural IL 1α and -β and recombinant IL 1α and -β did not exhibit chemotactic activity for neutrophils in our assay. Among mononuclear leukocytes, the monocyte was the principal producer of neutrophil chemotactic factor. These results suggest that a chemotactic factor for neutrophils, different from IL 1, is produced by LPS-stimulated blood monocytes.

Original languageEnglish
Pages (from-to)788-793
Number of pages6
JournalJournal of Immunology
Volume139
Issue number3
Publication statusPublished - Jan 1 1987
Externally publishedYes

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Fingerprint Dive into the research topics of 'Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: Partial characterization and separation from interleukin 1 (IL 1)'. Together they form a unique fingerprint.

Cite this