Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury

Takeshi Hayashi, Masanori Iwai, Tomoaki Ikeda, Guang Jin, Kentaro Deguchi, Shoko Nagotani, Hanzhe Zhang, Yoshihide Sehara, Isao Nagano, Mikio Shoji, Tsuyomu Ikenoue, Koji Abe

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)


Ischemia/hypoxia (I/H) causes severe perinatal brain disorders such as cerebral palsy. The neonatal brain possesses much plasticity, and to enhance new cell production would be an innovative means of therapy for such disorders. In order to elucidate the dynamic changes of neural progenitor cells in the neonatal brain after ischemia, we investigated new cells production in the subventricular zone and subsequent migration of these cells to the injured area. Newly produced cells were confirmed by incorporation of bromodeoxyuridine (BrdU), and attempt for differentiation was investigated by immunohistochemistry for molecular markers of each cellular lineage. In the sham-control brain, there were many BrdU-labeled cells which gradually decreased as the animal becomes older. Many of these cells were oligodendroglial progenitor or microglial cells. Although there were only few neuronal cells labeled for BrdU in the sham-control, they dramatically increased after I/H. They were located at just beneath the subventricular zone where the progenitor cells reside and to the injured area, indicating that newly produced cells migrated to the infarct region and differentiated into neuronal precursor cells in order to compensate the lost neural cells. We found that BrdU-labeled astroglial, oligodendroglial progenitor, and microglial cells were also increased after I/H, suggesting that they also play active roles in recovery. Progenitor cells may have potential for treating perinatal brain disorders.

Original languageEnglish
Pages (from-to)41-49
Number of pages9
JournalBrain Research
Issue number1
Publication statusPublished - Mar 15 2005


  • Hypoxia
  • Ischemia
  • Migration
  • Neonate
  • Progenitor cell
  • Rat

ASJC Scopus subject areas

  • Neuroscience(all)
  • Molecular Biology
  • Clinical Neurology
  • Developmental Biology


Dive into the research topics of 'Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury'. Together they form a unique fingerprint.

Cite this