Nanobody-based RFP-dependent Cre recombinase for selective anterograde tracing in RFP-expressing transgenic animals

Ayumu Inutsuka, Sho Maejima, Hiroyuki Mizoguchi, Ryosuke Kaneko, Rei Nomura, Keiko Takanami, Hirotaka Sakamoto, Tatsushi Onaka

Research output: Contribution to journalArticlepeer-review

Abstract

Transgenic animals expressing fluorescent proteins are widely used to label specific cells and proteins. By using a split Cre recombinase fused with mCherry-binding nanobodies or designed ankyrin repeat proteins, we created Cre recombinase dependent on red fluorescent protein (RFP) (Cre-DOR). Functional binding units for monomeric RFPs are different from those for polymeric RFPs. We confirmed selective target RFP-dependent gene expression in the mouse cerebral cortex using stereotaxic injection of adeno-associated virus vectors. In estrogen receptor-beta (Esr2)-mRFP1 mice and gastrin-releasing peptide receptor (Grpr)-mRFP1 rats, we confirmed that Cre-DOR can be used for selective tracing of the neural projection from RFP-expressing specific neurons. Cellular localization of RFPs affects recombination efficiency of Cre-DOR, and light and chemical-induced nuclear translocation of an RFP-fused protein can modulate Cre-DOR efficiency. Our results provide a method for manipulating gene expression in specific cells expressing RFPs and expand the repertory of nanobody-based genetic tools.

Original languageEnglish
Article number979
JournalCommunications Biology
Volume5
Issue number1
DOIs
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint

Dive into the research topics of 'Nanobody-based RFP-dependent Cre recombinase for selective anterograde tracing in RFP-expressing transgenic animals'. Together they form a unique fingerprint.

Cite this