Multiple-Transmitter with Phase-Shift and Dynamic ZVS Angle Controls at Fixed Operating Frequency for Cross-Interference Free Wireless Power Transfer Systems

Kodai Matsuura, Masataka Ishihara, Akihiro Konishi, Kazuhiro Umetani, Eiji Hiraki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Resonant inductive coupling wireless power transfer (RIC-WPT) systems with multiple transmitters and multiple receivers often suffer from cross-interference among transmitters as well as among receivers. The cross-interference causes the fluctuation of the output power of the receiver and hard switching of the inverter on the transmitter. To avoid the cross-interference, controlling the amplitude and the phase of each transmitter current is an effective method. Therefore, this paper proposes a multiple-transmitter that can compensate for the cross-interference influence by implementing two controls. First, adopting the phase-shift control on the full-bridge inverter, the current amplitude is controlled to be constant. Second, applying the reactance control, each phase of the current is controlled to be in phase. In addition to the above operations, especially under a high-frequency operation, zero-voltage switching (ZVS) at a fixed operating frequency is essential for improving the power efficiency while not exceeding an allowable narrow bandwidth. Thus, the reactance control also works to ensure ZVS in all load conditions without adjusting the frequency. The RIC-WPT prototype with two transmitters and a single receiver is built to verify that the proposed multiple-transmitter can compensate for the cross-interference influence while achieving ZVS in different load conditions at a fixed operating frequency.

Original languageEnglish
Title of host publication2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5767-5774
Number of pages8
ISBN (Electronic)9781728151359
DOIs
Publication statusPublished - 2021
Event13th IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Virtual, Online, Canada
Duration: Oct 10 2021Oct 14 2021

Publication series

Name2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Proceedings

Conference

Conference13th IEEE Energy Conversion Congress and Exposition, ECCE 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/10/2110/14/21

Keywords

  • cross-interference
  • multiple-transmitter
  • phase-shift control
  • resonant inductive coupling
  • wireless power transfer
  • zero-voltage switching

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Multiple-Transmitter with Phase-Shift and Dynamic ZVS Angle Controls at Fixed Operating Frequency for Cross-Interference Free Wireless Power Transfer Systems'. Together they form a unique fingerprint.

Cite this