Morphological and topological transformations that are induced into cell-sized giant liposomes

Kingo Takiguchi, Fumimasa Nomura, Shuichi Takeda

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Morphological and topological changes of biological membranes play essential roles in cellular activities, such as endocytosis and exocytosis. Here, real-time imaging of giant liposomes using optical dark-field microscopy reveals that the lipid bilayer membrane possesses the ability to undergo topological transformation through interactions with proteins, peptides, or surfactants.

Original languageEnglish
Title of host publication2011 Int. Symp. on Micro-NanoMechatronics and Human Science, Symp. on "COE for Education and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio Assembler for 3D Cellular System Innovation"
PublisherIEEE Computer Society
Pages456-460
Number of pages5
ISBN (Print)9781457713613
DOIs
Publication statusPublished - 2011
Externally publishedYes
Event22nd Annual Symp. on Micro-Nano Mechatronics and Human Science, MHS 2011, Held Jointly with the Symp. on COE for Education and Research of Micro-Nano Mechatronics, Micro-Nano GCOE 2011, Symp. on Hyper Bio Assembler for 3D Cellular System Innovation - Nagoya, Japan
Duration: Nov 6 2011Nov 9 2011

Publication series

Name2011 Int. Symp. on Micro-NanoMechatronics and Human Science, Symp. on "COE for Education and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio Assembler for 3D Cellular System Innovation"

Other

Other22nd Annual Symp. on Micro-Nano Mechatronics and Human Science, MHS 2011, Held Jointly with the Symp. on COE for Education and Research of Micro-Nano Mechatronics, Micro-Nano GCOE 2011, Symp. on Hyper Bio Assembler for 3D Cellular System Innovation
Country/TerritoryJapan
CityNagoya
Period11/6/1111/9/11

ASJC Scopus subject areas

  • Artificial Intelligence
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Morphological and topological transformations that are induced into cell-sized giant liposomes'. Together they form a unique fingerprint.

Cite this