TY - JOUR
T1 - Momentum-Dependent Magnon Lifetime in the Metallic Noncollinear Triangular Antiferromagnet CrB2
AU - Park, Pyeongjae
AU - Park, Kisoo
AU - Kim, Taehun
AU - Kousaka, Yusuke
AU - Lee, Ki Hoon
AU - Perring, T. G.
AU - Jeong, Jaehong
AU - Stuhr, Uwe
AU - Akimitsu, Jun
AU - Kenzelmann, Michel
AU - Park, Je Geun
N1 - Funding Information:
We thank Martin Mourigal, Pengcheng Dai, and Henrik M. Ronnow for helpful discussions. This work was supported by the Leading Researcher Program of the National Research Foundation of Korea (Grant No. 2020R1A3B2079375) and the Institute for Basic Science in Korea (IBS-R009-G1).
Publisher Copyright:
© 2020 American Physical Society.
PY - 2020/7/10
Y1 - 2020/7/10
N2 - Noncollinear magnetic order arises for various reasons in several magnetic systems and exhibits interesting spin dynamics. Despite its ubiquitous presence, little is known of how magnons, otherwise stable quasiparticles, decay in these systems, particularly in metallic magnets. Using inelastic neutron scattering, we examine the magnetic excitation spectra in a metallic noncollinear antiferromagnet CrB2, in which Cr atoms form a triangular lattice and display incommensurate magnetic order. Our data show intrinsic magnon damping and continuumlike excitations that cannot be explained by linear spin wave theory. The intrinsic magnon linewidth Γ(q,Eq) shows very unusual momentum dependence, which our analysis shows to originate from the combination of two-magnon decay and the Stoner continuum. By comparing the theoretical predictions with the experiments, we identify where in the momentum and energy space one of the two factors becomes more dominant. Our work constitutes a rare comprehensive study of the spin dynamics in metallic noncollinear antiferromagnets. It reveals, for the first time, definite experimental evidence of the higher-order effects in metallic antiferromagnets.
AB - Noncollinear magnetic order arises for various reasons in several magnetic systems and exhibits interesting spin dynamics. Despite its ubiquitous presence, little is known of how magnons, otherwise stable quasiparticles, decay in these systems, particularly in metallic magnets. Using inelastic neutron scattering, we examine the magnetic excitation spectra in a metallic noncollinear antiferromagnet CrB2, in which Cr atoms form a triangular lattice and display incommensurate magnetic order. Our data show intrinsic magnon damping and continuumlike excitations that cannot be explained by linear spin wave theory. The intrinsic magnon linewidth Γ(q,Eq) shows very unusual momentum dependence, which our analysis shows to originate from the combination of two-magnon decay and the Stoner continuum. By comparing the theoretical predictions with the experiments, we identify where in the momentum and energy space one of the two factors becomes more dominant. Our work constitutes a rare comprehensive study of the spin dynamics in metallic noncollinear antiferromagnets. It reveals, for the first time, definite experimental evidence of the higher-order effects in metallic antiferromagnets.
UR - http://www.scopus.com/inward/record.url?scp=85088117208&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088117208&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.125.027202
DO - 10.1103/PhysRevLett.125.027202
M3 - Article
C2 - 32701352
AN - SCOPUS:85088117208
SN - 0031-9007
VL - 125
JO - Physical Review Letters
JF - Physical Review Letters
IS - 2
M1 - 027202
ER -