Molecular characterization of second tomato α1,3/4-fucosidase (α-Fuc'ase Sl-2), a member of glycosyl hydrolase family 29 active toward the core α1,3-fucosyl residue in plant N-glycans

Md Ziaur Rahman, Yuta Tsujimori, Megumi Maeda, Md Anowar Hossain, Takeshi Ishimizu, Yoshinobu Kimura

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In a previous study, we molecular-characterized a tomato (Solanum lycopersicum) α1, 3/4-fucosidase (α-Fuc'ase Sl-1) encoded in a tomato gene (Solyc03g006980), indicating that α-Fuc'ase Sl-1 is involved in the turnover of Lea epitope-containing N-glycans. In this study, we have characterized another tomato gene (Solyc11g069010) encoding α1, 3/4-fucosidase (α-Fuc'ase Sl-2), which is also active toward the complex type N-glycans containing Lea epitope(s). The baculovirus-insect cell expression system was used to express that α-Fuc'ase Sl-2 with anti-FLAG tag, and the expression product (rFuc'ase Sl-2), was found as a 65 kDa protein using SDS-PAGE and has an optimum pH of around 5.0. Similarly to rFuc'ase Sl-1, rFuc'ase Sl-2 hydrolyzed the non-reducing terminal α1, 3-fucose residue on LNFP III and α1, 4-fucose residues of Lea epitopes on plant complex type N-glycans, but not the core α1, 3-fucose residue on Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc or Fucα1-3GlcNAc. However, we found that both α-Fuc'ases Sl-1 and Sl-2 were specifically active toward α1, 3-fucose residue on GlcNAcβ1-4(Fucα1-3)GlcNAc, indicating that the non-substituted β-GlcNAc linked to the proximal GlcNAc residue of the core tri-saccharide moiety of plant specific N-glycans must be a pre-requisite for α-Fuc'ase activity. A 3 D modelled structure of the catalytic sites of α-Fuc'ase Sl-2 suggested that Asp192 and Glu236 may be important for binding to the α1, 3/4 fucose residue.

Original languageEnglish
Pages (from-to)53-63
Number of pages11
JournalJournal of Biochemistry
Volume164
Issue number1
DOIs
Publication statusPublished - Jul 1 2018

Fingerprint

alpha-L-Fucosidase
Fucose
Hydrolases
Lycopersicon esculentum
Polysaccharides
Epitopes
Gene encoding
Baculoviridae
Genes
Insects
Polyacrylamide Gel Electrophoresis
Catalytic Domain
Proteins

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology

Cite this

Molecular characterization of second tomato α1,3/4-fucosidase (α-Fuc'ase Sl-2), a member of glycosyl hydrolase family 29 active toward the core α1,3-fucosyl residue in plant N-glycans. / Rahman, Md Ziaur; Tsujimori, Yuta; Maeda, Megumi; Hossain, Md Anowar; Ishimizu, Takeshi; Kimura, Yoshinobu.

In: Journal of Biochemistry, Vol. 164, No. 1, 01.07.2018, p. 53-63.

Research output: Contribution to journalArticle

@article{364121c1452b42e3b1c1528b882233d6,
title = "Molecular characterization of second tomato α1,3/4-fucosidase (α-Fuc'ase Sl-2), a member of glycosyl hydrolase family 29 active toward the core α1,3-fucosyl residue in plant N-glycans",
abstract = "In a previous study, we molecular-characterized a tomato (Solanum lycopersicum) α1, 3/4-fucosidase (α-Fuc'ase Sl-1) encoded in a tomato gene (Solyc03g006980), indicating that α-Fuc'ase Sl-1 is involved in the turnover of Lea epitope-containing N-glycans. In this study, we have characterized another tomato gene (Solyc11g069010) encoding α1, 3/4-fucosidase (α-Fuc'ase Sl-2), which is also active toward the complex type N-glycans containing Lea epitope(s). The baculovirus-insect cell expression system was used to express that α-Fuc'ase Sl-2 with anti-FLAG tag, and the expression product (rFuc'ase Sl-2), was found as a 65 kDa protein using SDS-PAGE and has an optimum pH of around 5.0. Similarly to rFuc'ase Sl-1, rFuc'ase Sl-2 hydrolyzed the non-reducing terminal α1, 3-fucose residue on LNFP III and α1, 4-fucose residues of Lea epitopes on plant complex type N-glycans, but not the core α1, 3-fucose residue on Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc or Fucα1-3GlcNAc. However, we found that both α-Fuc'ases Sl-1 and Sl-2 were specifically active toward α1, 3-fucose residue on GlcNAcβ1-4(Fucα1-3)GlcNAc, indicating that the non-substituted β-GlcNAc linked to the proximal GlcNAc residue of the core tri-saccharide moiety of plant specific N-glycans must be a pre-requisite for α-Fuc'ase activity. A 3 D modelled structure of the catalytic sites of α-Fuc'ase Sl-2 suggested that Asp192 and Glu236 may be important for binding to the α1, 3/4 fucose residue.",
author = "Rahman, {Md Ziaur} and Yuta Tsujimori and Megumi Maeda and Hossain, {Md Anowar} and Takeshi Ishimizu and Yoshinobu Kimura",
year = "2018",
month = "7",
day = "1",
doi = "10.1093/jb/mvy029",
language = "English",
volume = "164",
pages = "53--63",
journal = "Journal of Biochemistry",
issn = "0021-924X",
publisher = "Oxford University Press",
number = "1",

}

TY - JOUR

T1 - Molecular characterization of second tomato α1,3/4-fucosidase (α-Fuc'ase Sl-2), a member of glycosyl hydrolase family 29 active toward the core α1,3-fucosyl residue in plant N-glycans

AU - Rahman, Md Ziaur

AU - Tsujimori, Yuta

AU - Maeda, Megumi

AU - Hossain, Md Anowar

AU - Ishimizu, Takeshi

AU - Kimura, Yoshinobu

PY - 2018/7/1

Y1 - 2018/7/1

N2 - In a previous study, we molecular-characterized a tomato (Solanum lycopersicum) α1, 3/4-fucosidase (α-Fuc'ase Sl-1) encoded in a tomato gene (Solyc03g006980), indicating that α-Fuc'ase Sl-1 is involved in the turnover of Lea epitope-containing N-glycans. In this study, we have characterized another tomato gene (Solyc11g069010) encoding α1, 3/4-fucosidase (α-Fuc'ase Sl-2), which is also active toward the complex type N-glycans containing Lea epitope(s). The baculovirus-insect cell expression system was used to express that α-Fuc'ase Sl-2 with anti-FLAG tag, and the expression product (rFuc'ase Sl-2), was found as a 65 kDa protein using SDS-PAGE and has an optimum pH of around 5.0. Similarly to rFuc'ase Sl-1, rFuc'ase Sl-2 hydrolyzed the non-reducing terminal α1, 3-fucose residue on LNFP III and α1, 4-fucose residues of Lea epitopes on plant complex type N-glycans, but not the core α1, 3-fucose residue on Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc or Fucα1-3GlcNAc. However, we found that both α-Fuc'ases Sl-1 and Sl-2 were specifically active toward α1, 3-fucose residue on GlcNAcβ1-4(Fucα1-3)GlcNAc, indicating that the non-substituted β-GlcNAc linked to the proximal GlcNAc residue of the core tri-saccharide moiety of plant specific N-glycans must be a pre-requisite for α-Fuc'ase activity. A 3 D modelled structure of the catalytic sites of α-Fuc'ase Sl-2 suggested that Asp192 and Glu236 may be important for binding to the α1, 3/4 fucose residue.

AB - In a previous study, we molecular-characterized a tomato (Solanum lycopersicum) α1, 3/4-fucosidase (α-Fuc'ase Sl-1) encoded in a tomato gene (Solyc03g006980), indicating that α-Fuc'ase Sl-1 is involved in the turnover of Lea epitope-containing N-glycans. In this study, we have characterized another tomato gene (Solyc11g069010) encoding α1, 3/4-fucosidase (α-Fuc'ase Sl-2), which is also active toward the complex type N-glycans containing Lea epitope(s). The baculovirus-insect cell expression system was used to express that α-Fuc'ase Sl-2 with anti-FLAG tag, and the expression product (rFuc'ase Sl-2), was found as a 65 kDa protein using SDS-PAGE and has an optimum pH of around 5.0. Similarly to rFuc'ase Sl-1, rFuc'ase Sl-2 hydrolyzed the non-reducing terminal α1, 3-fucose residue on LNFP III and α1, 4-fucose residues of Lea epitopes on plant complex type N-glycans, but not the core α1, 3-fucose residue on Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc or Fucα1-3GlcNAc. However, we found that both α-Fuc'ases Sl-1 and Sl-2 were specifically active toward α1, 3-fucose residue on GlcNAcβ1-4(Fucα1-3)GlcNAc, indicating that the non-substituted β-GlcNAc linked to the proximal GlcNAc residue of the core tri-saccharide moiety of plant specific N-glycans must be a pre-requisite for α-Fuc'ase activity. A 3 D modelled structure of the catalytic sites of α-Fuc'ase Sl-2 suggested that Asp192 and Glu236 may be important for binding to the α1, 3/4 fucose residue.

UR - http://www.scopus.com/inward/record.url?scp=85049915574&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049915574&partnerID=8YFLogxK

U2 - 10.1093/jb/mvy029

DO - 10.1093/jb/mvy029

M3 - Article

C2 - 29444271

AN - SCOPUS:85049915574

VL - 164

SP - 53

EP - 63

JO - Journal of Biochemistry

JF - Journal of Biochemistry

SN - 0021-924X

IS - 1

ER -