TY - JOUR
T1 - Microtubule dynamics regulate cyclic stretch-induced cell alignment in human airway smooth muscle cells
AU - Morioka, Masataka
AU - Parameswaran, Harikrishnan
AU - Naruse, Keiji
AU - Kondo, Masashi
AU - Sokabe, Masahiro
AU - Hasegawa, Yoshinori
AU - Suki, Béla
AU - Ito, Satoru
N1 - Funding Information:
K.N. has served on the STREX Advisory Board for up to $1,000. He has received a grant from MENICON for $1,001–$5,000, and a sponsored grant from the National Institutes of Health for $5,001–$10,000. He has a patent pending with STREX for a stretch machine, and owns stock in the amount of $10,001–$50,000. None of the other authors have a financial relationship with a commercial entity that has an interest in the subject of this manuscript. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.
PY - 2011/10/17
Y1 - 2011/10/17
N2 - Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells were exposed to cyclic uniaxial stretch. Human airway smooth muscle cells, cultured on type I collagen-coated elastic silicone membranes, were stretched uniaxially (20% in strain, 30 cycles/min) for 2 h. The population of airway smooth muscle cells which were originally oriented randomly aligned near perpendicular to the stretch axis in a time-dependent manner. However, when the cells treated with microtubule disruptors, nocodazole and colchicine, were subjected to the same cyclic uniaxial stretch, the cells failed to align. Lack of alignment was also observed for airway smooth muscle cells treated with a microtubule stabilizer, paclitaxel. To understand the intracellular mechanisms involved, we developed a computational model in which microtubule polymerization and attachment to focal adhesions were regulated by the preexisting tensile stress, pre-stress, on actin stress fibers. We demonstrate that microtubules play a central role in cell re-orientation when cells experience cyclic uniaxial stretching. Our findings further suggest that cell alignment and cytoskeletal reorganization in response to cyclic stretch results from the ability of the microtubule-stress fiber assembly to maintain a homeostatic strain on the stress fiber at focal adhesions. The mechanism of stretch-induced alignment we uncovered is likely involved in various airway functions as well as in the pathophysiology of airway remodeling in asthma.
AB - Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells were exposed to cyclic uniaxial stretch. Human airway smooth muscle cells, cultured on type I collagen-coated elastic silicone membranes, were stretched uniaxially (20% in strain, 30 cycles/min) for 2 h. The population of airway smooth muscle cells which were originally oriented randomly aligned near perpendicular to the stretch axis in a time-dependent manner. However, when the cells treated with microtubule disruptors, nocodazole and colchicine, were subjected to the same cyclic uniaxial stretch, the cells failed to align. Lack of alignment was also observed for airway smooth muscle cells treated with a microtubule stabilizer, paclitaxel. To understand the intracellular mechanisms involved, we developed a computational model in which microtubule polymerization and attachment to focal adhesions were regulated by the preexisting tensile stress, pre-stress, on actin stress fibers. We demonstrate that microtubules play a central role in cell re-orientation when cells experience cyclic uniaxial stretching. Our findings further suggest that cell alignment and cytoskeletal reorganization in response to cyclic stretch results from the ability of the microtubule-stress fiber assembly to maintain a homeostatic strain on the stress fiber at focal adhesions. The mechanism of stretch-induced alignment we uncovered is likely involved in various airway functions as well as in the pathophysiology of airway remodeling in asthma.
UR - http://www.scopus.com/inward/record.url?scp=80054752373&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054752373&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0026384
DO - 10.1371/journal.pone.0026384
M3 - Article
C2 - 22022610
AN - SCOPUS:80054752373
SN - 1932-6203
VL - 6
JO - PLoS One
JF - PLoS One
IS - 10
M1 - e26384
ER -