Abstract
The spinel/perovskite heterointerface γ-Al2O3/SrTiO3 hosts a two-dimensional electron system (2DES) with electron mobilities exceeding those in its all-perovskite counterpart LaAlO3/SrTiO3 by more than an order of magnitude despite the abundance of oxygen vacancies which act as electron donors as well as scattering sites. By means of resonant soft x-ray photoemission spectroscopy and ab initio calculations we reveal the presence of a sharply localized type of oxygen vacancies at the very interface due to the local breaking of the perovskite symmetry. We explain the extraordinarily high mobilities by reduced scattering resulting from the preferential formation of interfacial oxygen vacancies and spatial separation of the resulting 2DES in deeper SrTiO3 layers. Our findings comply with transport studies and pave the way towards defect engineering at interfaces of oxides with different crystal structures.
Original language | English |
---|---|
Journal | Unknown Journal |
Publication status | Published - Oct 16 2017 |
Externally published | Yes |
ASJC Scopus subject areas
- General