Metabolism of 2,4,5,2',4',5'-hexachlorobiphenyl (PCB153) in guinea pig

N. Ariyoshi, N. Koga, H. Yoshimura, K. Oguri

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

1. The in vitro and vivo metabolism of 2,4,5,2',4',5'-hexachlorobiphenyl (PCB153) in guinea pig has been studied. 2. Seven metabolites were detected in the faeces of PCB153-treated animals and three were identical to those produced by dog liver microsomes. The detection of a metabolite where a chlorine atom was shifted from the 2- to 3-position strongly suggested the involvement of 2,3-arene oxide intermediate, and evidence for the concomitant formation of a 3,4-arene oxide intermediate was provided by identifying other two minor metabolites which were dechlorinated at the 4-position. 3. In vitro studies using liver microsomes from guinea pigs revealed that the 2,3-arene oxide and 5-hydroxylation pathways are the predominant metabolic routes compared with the 3,4-arene oxide pathway. Although the guinea pig is an another species that can metabolize PCB153 mainly to the 2,3-arene oxide intermediate, the rate of formation was only about one-tenth of the dog. 4. These results indicate that the ability to form this unusual 2,3-arene oxide intermediate may not be responsible for high excretion rate of this congener. Our data also suggest that the cytochrome P450-catalysed metabolism of PCB153 in the guinea pig and dog are similar, whereas for post-cytochrome P450 metabolism, the guinea pig resembles the rabbit.

Original languageEnglish
Pages (from-to)973-983
Number of pages11
JournalXenobiotica
Volume27
Issue number9
DOIs
Publication statusPublished - Sep 29 1997
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Toxicology
  • Pharmacology
  • Health, Toxicology and Mutagenesis

Fingerprint Dive into the research topics of 'Metabolism of 2,4,5,2',4',5'-hexachlorobiphenyl (PCB153) in guinea pig'. Together they form a unique fingerprint.

  • Cite this