Metabolic co-dependence drives the evolutionarily ancient Hydra–Chlorella symbiosis

Mayuko Hamada, Katja Schröder, Jay Bathia, Ulrich Kürn, Sebastian Fraune, Mariia Khalturina, Konstantin Khalturin, Chuya Shinzato, Nori Satoh, Thomas C.G. Bosch

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

Many multicellular organisms rely on symbiotic associations for support of metabolic activity, protection, or energy. Understanding the mechanisms involved in controlling such interactions remains a major challenge. In an unbiased approach we identified key players that control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and glutamine synthetase suggesting regulated nutrition supply between host and symbionts. Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of the otherwise obligate symbiotic Chlorella, indicating loss of autonomy and dependence on the host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to the host environment. Our observations portray ancient symbiotic interactions as a codependent partnership in which exchange of nutrients appears to be the primary driving force.

Original languageEnglish
Article numbere35122
JournaleLife
Volume7
DOIs
Publication statusPublished - May 31 2018

ASJC Scopus subject areas

  • Neuroscience(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'Metabolic co-dependence drives the evolutionarily ancient Hydra–Chlorella symbiosis'. Together they form a unique fingerprint.

Cite this