Measurement of thermal conductivity of omphacite, jadeite, and diopside up to 14GPa and 1000 K: Implication for the role of eclogite in subduction slab

Chao Wang, Akira Yoneda, Masahiro Osako, Eiji Ito, Takashi Yoshino, Zhenmin Jin

    Research output: Contribution to journalArticlepeer-review

    9 Citations (Scopus)

    Abstract

    Thermal conductivity and diffusivity for three pyroxenes, omphacite, jadeite, and diopside, were determined up to 14GPa and 1000 K in the Kawai-type multianvil apparatus via the pulse heating method. Measurements for omphacite are characterized by much lower thermal conductivity and thermal diffusivity than those of its two end-members of jadeite and diopside, presumably because of the complex substitution of four cations (Na+1, Ca+2, Al+3, and Mg+2) in omphacite. Therefore, simple arithmetic averaging is unsuitable for estimating thermal conductivity and diffusivity of the jadeite-diopside solid solution system. The thermal property of eclogite was estimated from those of garnet and omphacite. The thermal conductivity of eclogite is much smaller than that of harzburgite, which is assumed to compose of 80% olivine and 20% enstatite, implying that subducted oceanic crust impedes thermal conduction from the hotter wedge mantle to the subducting slab. Thermal structure simulation results show that temperature of the subduction zone is about 50°C decreased when the effect of oceanic crust is included.

    Original languageEnglish
    Pages (from-to)6277-6287
    Number of pages11
    JournalJournal of Geophysical Research: Solid Earth
    Volume119
    Issue number8
    DOIs
    Publication statusPublished - Aug 20 2014

    ASJC Scopus subject areas

    • Geophysics
    • Geochemistry and Petrology
    • Earth and Planetary Sciences (miscellaneous)
    • Space and Planetary Science

    Fingerprint

    Dive into the research topics of 'Measurement of thermal conductivity of omphacite, jadeite, and diopside up to 14GPa and 1000 K: Implication for the role of eclogite in subduction slab'. Together they form a unique fingerprint.

    Cite this