Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan

Description and crystal structure

Aaron Lussier, Neil A. Ball, Frank C. Hawthorne, Darrell J. Henry, Rentaro Shimizu, Yoshihide Ogasawara, Tsutomu Ota

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Maruyamaite, ideally K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, was recently approved as the first K-dominant mineral-species of the tourmaline supergroup. It occurs in ultrahigh-pressure quartzofeldspathic gneisses of the Kumdy-Kol area of the Kokchetav Massif, northern Kazakhstan. Maruyamaite contains inclusions of microdiamonds, and probably crystallized near the peak pressure conditions of UHP metamorphism in the stability field of diamond. Crystals occur as anhedral to euhedral grains up to 2 mm across, embedded in a matrix of anhedral quartz and K-feldspar. Maruyamaite is pale brown to brown with a white to very pale-brown streak and has a vitreous luster. It is brittle and has a Mohs hardness of ∼7; it is non-fluorescent, has no observable cleavage or parting, and has a calculated density of 3.081 g/cm3. In plane-polarized transmitted light, it is pleochroic, O = darkish brown, E = pale brown. Maruyamaite is uniaxial negative, ω = 1.634, ε = 1.652, both ±0.002. It is rhombohedral, space group R3m, a = 15.955(1), c = 7.227(1) Å, V = 1593(3) Å3, Z = 3. The strongest 10 X-ray dif- fraction lines in the powder pattern are [d in Å(I)(hkl)]: 2.581(100)(051), 2.974(85)(132), 3.995 (69)(240), 4.237(59)(231), 2.046(54)(162), 3.498(42)(012), 1.923(36)(372), 6.415(23)(111), 1.595(22)(5.10.0), 5.002(21)(021), and 4.610(20)(030). The crystal structure of maruyamaite was refined to an R1 index of 1.58% using 1149 unique reflections measured with MoKα X-radiation. Analysis by a combination of electron microprobe and crystal-structure refinement gave SiO2 36.37, Al2O3 31.50, TiO2 1.09, Cr2O3 0.04, Fe2O3 0.33, FeO 4.01, MgO 9.00, CaO 1.47, Na2O 0.60, K2O 2.54, F 0.30, B2O3(calc) 10.58, H2O(calc) 2.96, sum 100.67 wt%. The formula unit, calculated on the basis of 31 anions pfu with B = 3, OH = 3.24 apfu (derived from the crystal structure) and the site populations assigned to reflect the mean interatomic distances, is (K0.53Na0.19Ca0.260.02)ΣX=1.00(Mg1.19Fe0.552+Fe0.053+ Ti0.14Al1.07)□Y=3.00(Al5.00Mg1.00)(Si5.97Al0.03O18)(BO3)3(OH)3(O0.602 F0.16OH0.24). Maruyamaite, ideally K(MgAl2) (Al5Mg)(BO3)3(Si6O18)(OH)3O, is related to oxy-dravite: ideally Na(MgAl2)(Al5Mg)(BO3)3(Si6O18)(OH)3O, by the substitution XK → XNa.

Original languageEnglish
Pages (from-to)355-361
Number of pages7
JournalAmerican Mineralogist
Volume101
Issue number2
DOIs
Publication statusPublished - Jan 1 2016

Fingerprint

Kazakhstan
tourmaline
crystal structure
potassium
Potassium
Crystal structure
dravite
luster
Diamond
Quartz
Light polarization
electron probe analysis
Powders
diamond
polarized light
cleavage
hardness
Anions
Minerals
feldspar

Keywords

  • crystal-structure refinement
  • electron-microprobe analysis
  • Kokchetav Massif
  • Maruyamaite
  • microdiamond inclusions
  • new mineral
  • northern Kazakhstan
  • optical properties
  • tourmaline
  • ultrahigh-pressure

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Cite this

Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan : Description and crystal structure. / Lussier, Aaron; Ball, Neil A.; Hawthorne, Frank C.; Henry, Darrell J.; Shimizu, Rentaro; Ogasawara, Yoshihide; Ota, Tsutomu.

In: American Mineralogist, Vol. 101, No. 2, 01.01.2016, p. 355-361.

Research output: Contribution to journalArticle

Lussier, Aaron ; Ball, Neil A. ; Hawthorne, Frank C. ; Henry, Darrell J. ; Shimizu, Rentaro ; Ogasawara, Yoshihide ; Ota, Tsutomu. / Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan : Description and crystal structure. In: American Mineralogist. 2016 ; Vol. 101, No. 2. pp. 355-361.
@article{6e77e35a8f124419a335f3aeac4e1477,
title = "Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure",
abstract = "Maruyamaite, ideally K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, was recently approved as the first K-dominant mineral-species of the tourmaline supergroup. It occurs in ultrahigh-pressure quartzofeldspathic gneisses of the Kumdy-Kol area of the Kokchetav Massif, northern Kazakhstan. Maruyamaite contains inclusions of microdiamonds, and probably crystallized near the peak pressure conditions of UHP metamorphism in the stability field of diamond. Crystals occur as anhedral to euhedral grains up to 2 mm across, embedded in a matrix of anhedral quartz and K-feldspar. Maruyamaite is pale brown to brown with a white to very pale-brown streak and has a vitreous luster. It is brittle and has a Mohs hardness of ∼7; it is non-fluorescent, has no observable cleavage or parting, and has a calculated density of 3.081 g/cm3. In plane-polarized transmitted light, it is pleochroic, O = darkish brown, E = pale brown. Maruyamaite is uniaxial negative, ω = 1.634, ε = 1.652, both ±0.002. It is rhombohedral, space group R3m, a = 15.955(1), c = 7.227(1) {\AA}, V = 1593(3) {\AA}3, Z = 3. The strongest 10 X-ray dif- fraction lines in the powder pattern are [d in {\AA}(I)(hkl)]: 2.581(100)(051), 2.974(85)(132), 3.995 (69)(240), 4.237(59)(231), 2.046(54)(162), 3.498(42)(012), 1.923(36)(372), 6.415(23)(111), 1.595(22)(5.10.0), 5.002(21)(021), and 4.610(20)(030). The crystal structure of maruyamaite was refined to an R1 index of 1.58{\%} using 1149 unique reflections measured with MoKα X-radiation. Analysis by a combination of electron microprobe and crystal-structure refinement gave SiO2 36.37, Al2O3 31.50, TiO2 1.09, Cr2O3 0.04, Fe2O3 0.33, FeO 4.01, MgO 9.00, CaO 1.47, Na2O 0.60, K2O 2.54, F 0.30, B2O3(calc) 10.58, H2O(calc) 2.96, sum 100.67 wt{\%}. The formula unit, calculated on the basis of 31 anions pfu with B = 3, OH = 3.24 apfu (derived from the crystal structure) and the site populations assigned to reflect the mean interatomic distances, is (K0.53Na0.19Ca0.26□0.02)ΣX=1.00(Mg1.19Fe0.552+Fe0.053+ Ti0.14Al1.07)□Y=3.00(Al5.00Mg1.00)(Si5.97Al0.03O18)(BO3)3(OH)3(O0.602 F0.16OH0.24). Maruyamaite, ideally K(MgAl2) (Al5Mg)(BO3)3(Si6O18)(OH)3O, is related to oxy-dravite: ideally Na(MgAl2)(Al5Mg)(BO3)3(Si6O18)(OH)3O, by the substitution XK → XNa.",
keywords = "crystal-structure refinement, electron-microprobe analysis, Kokchetav Massif, Maruyamaite, microdiamond inclusions, new mineral, northern Kazakhstan, optical properties, tourmaline, ultrahigh-pressure",
author = "Aaron Lussier and Ball, {Neil A.} and Hawthorne, {Frank C.} and Henry, {Darrell J.} and Rentaro Shimizu and Yoshihide Ogasawara and Tsutomu Ota",
year = "2016",
month = "1",
day = "1",
doi = "10.2138/am-2016-5359",
language = "English",
volume = "101",
pages = "355--361",
journal = "American Mineralogist",
issn = "0003-004X",
publisher = "Mineralogical Society of America",
number = "2",

}

TY - JOUR

T1 - Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan

T2 - Description and crystal structure

AU - Lussier, Aaron

AU - Ball, Neil A.

AU - Hawthorne, Frank C.

AU - Henry, Darrell J.

AU - Shimizu, Rentaro

AU - Ogasawara, Yoshihide

AU - Ota, Tsutomu

PY - 2016/1/1

Y1 - 2016/1/1

N2 - Maruyamaite, ideally K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, was recently approved as the first K-dominant mineral-species of the tourmaline supergroup. It occurs in ultrahigh-pressure quartzofeldspathic gneisses of the Kumdy-Kol area of the Kokchetav Massif, northern Kazakhstan. Maruyamaite contains inclusions of microdiamonds, and probably crystallized near the peak pressure conditions of UHP metamorphism in the stability field of diamond. Crystals occur as anhedral to euhedral grains up to 2 mm across, embedded in a matrix of anhedral quartz and K-feldspar. Maruyamaite is pale brown to brown with a white to very pale-brown streak and has a vitreous luster. It is brittle and has a Mohs hardness of ∼7; it is non-fluorescent, has no observable cleavage or parting, and has a calculated density of 3.081 g/cm3. In plane-polarized transmitted light, it is pleochroic, O = darkish brown, E = pale brown. Maruyamaite is uniaxial negative, ω = 1.634, ε = 1.652, both ±0.002. It is rhombohedral, space group R3m, a = 15.955(1), c = 7.227(1) Å, V = 1593(3) Å3, Z = 3. The strongest 10 X-ray dif- fraction lines in the powder pattern are [d in Å(I)(hkl)]: 2.581(100)(051), 2.974(85)(132), 3.995 (69)(240), 4.237(59)(231), 2.046(54)(162), 3.498(42)(012), 1.923(36)(372), 6.415(23)(111), 1.595(22)(5.10.0), 5.002(21)(021), and 4.610(20)(030). The crystal structure of maruyamaite was refined to an R1 index of 1.58% using 1149 unique reflections measured with MoKα X-radiation. Analysis by a combination of electron microprobe and crystal-structure refinement gave SiO2 36.37, Al2O3 31.50, TiO2 1.09, Cr2O3 0.04, Fe2O3 0.33, FeO 4.01, MgO 9.00, CaO 1.47, Na2O 0.60, K2O 2.54, F 0.30, B2O3(calc) 10.58, H2O(calc) 2.96, sum 100.67 wt%. The formula unit, calculated on the basis of 31 anions pfu with B = 3, OH = 3.24 apfu (derived from the crystal structure) and the site populations assigned to reflect the mean interatomic distances, is (K0.53Na0.19Ca0.26□0.02)ΣX=1.00(Mg1.19Fe0.552+Fe0.053+ Ti0.14Al1.07)□Y=3.00(Al5.00Mg1.00)(Si5.97Al0.03O18)(BO3)3(OH)3(O0.602 F0.16OH0.24). Maruyamaite, ideally K(MgAl2) (Al5Mg)(BO3)3(Si6O18)(OH)3O, is related to oxy-dravite: ideally Na(MgAl2)(Al5Mg)(BO3)3(Si6O18)(OH)3O, by the substitution XK → XNa.

AB - Maruyamaite, ideally K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, was recently approved as the first K-dominant mineral-species of the tourmaline supergroup. It occurs in ultrahigh-pressure quartzofeldspathic gneisses of the Kumdy-Kol area of the Kokchetav Massif, northern Kazakhstan. Maruyamaite contains inclusions of microdiamonds, and probably crystallized near the peak pressure conditions of UHP metamorphism in the stability field of diamond. Crystals occur as anhedral to euhedral grains up to 2 mm across, embedded in a matrix of anhedral quartz and K-feldspar. Maruyamaite is pale brown to brown with a white to very pale-brown streak and has a vitreous luster. It is brittle and has a Mohs hardness of ∼7; it is non-fluorescent, has no observable cleavage or parting, and has a calculated density of 3.081 g/cm3. In plane-polarized transmitted light, it is pleochroic, O = darkish brown, E = pale brown. Maruyamaite is uniaxial negative, ω = 1.634, ε = 1.652, both ±0.002. It is rhombohedral, space group R3m, a = 15.955(1), c = 7.227(1) Å, V = 1593(3) Å3, Z = 3. The strongest 10 X-ray dif- fraction lines in the powder pattern are [d in Å(I)(hkl)]: 2.581(100)(051), 2.974(85)(132), 3.995 (69)(240), 4.237(59)(231), 2.046(54)(162), 3.498(42)(012), 1.923(36)(372), 6.415(23)(111), 1.595(22)(5.10.0), 5.002(21)(021), and 4.610(20)(030). The crystal structure of maruyamaite was refined to an R1 index of 1.58% using 1149 unique reflections measured with MoKα X-radiation. Analysis by a combination of electron microprobe and crystal-structure refinement gave SiO2 36.37, Al2O3 31.50, TiO2 1.09, Cr2O3 0.04, Fe2O3 0.33, FeO 4.01, MgO 9.00, CaO 1.47, Na2O 0.60, K2O 2.54, F 0.30, B2O3(calc) 10.58, H2O(calc) 2.96, sum 100.67 wt%. The formula unit, calculated on the basis of 31 anions pfu with B = 3, OH = 3.24 apfu (derived from the crystal structure) and the site populations assigned to reflect the mean interatomic distances, is (K0.53Na0.19Ca0.26□0.02)ΣX=1.00(Mg1.19Fe0.552+Fe0.053+ Ti0.14Al1.07)□Y=3.00(Al5.00Mg1.00)(Si5.97Al0.03O18)(BO3)3(OH)3(O0.602 F0.16OH0.24). Maruyamaite, ideally K(MgAl2) (Al5Mg)(BO3)3(Si6O18)(OH)3O, is related to oxy-dravite: ideally Na(MgAl2)(Al5Mg)(BO3)3(Si6O18)(OH)3O, by the substitution XK → XNa.

KW - crystal-structure refinement

KW - electron-microprobe analysis

KW - Kokchetav Massif

KW - Maruyamaite

KW - microdiamond inclusions

KW - new mineral

KW - northern Kazakhstan

KW - optical properties

KW - tourmaline

KW - ultrahigh-pressure

UR - http://www.scopus.com/inward/record.url?scp=84959155621&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84959155621&partnerID=8YFLogxK

U2 - 10.2138/am-2016-5359

DO - 10.2138/am-2016-5359

M3 - Article

VL - 101

SP - 355

EP - 361

JO - American Mineralogist

JF - American Mineralogist

SN - 0003-004X

IS - 2

ER -