Light-harvesting ability of the fucoxanthin chlorophyll a/c-binding protein associated with photosystem II from the diatom chaetoceros gracilis as revealed by picosecond time-resolved fluorescence spectroscopy

Ryo Nagao, Makio Yokono, Ayaka Teshigahara, Seiji Akimoto, Tatsuya Tomo

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

The fucoxanthin chlorophyll a/c-binding protein (FCP) is a unique antenna complex possessed by diatoms. Although FCP complexes have been isolated from various diatoms, there is no direct evidence for the existence of FCP associated with photosystem II (FCPII). Here, we report the isolation and spectroscopic characterization of FCPII complex from the diatom Chaetoceros gracilis. The FCPII complex was purified using sucrose centrifugation and anion-exchange chromatography. Clear-native PAGE and SDS-PAGE analyses revealed that the FCPII complex was composed of FCP-A oligomer and FCP-B/C trimer. Time-resolved fluorescence spectra of the FCPII complex were measured at 77 K. The characteristic lifetimes and fluorescence components were determined using global fitting analysis, followed by the construction of fluorescence decay-associated spectra (FDAS). FDAS exhibited fluorescence rises and decays, reflecting excitation energy transfer, with the time constants of 150 ps, 800 ps, and 2.9 ns. The long time constants are most likely attributed to the intercomplex excitation energy transfer between FCP-A oligomer and FCP-B/C trimer in the FCPII complex. The 5.6 ns FDAS likely originates from the final energy traps. In contrast, the FDAS exhibited no quenching component with any time constant. These results indicate that the FCPII complex is efficient in light harvesting and excitation energy transfer.

Original languageEnglish
Pages (from-to)5093-5100
Number of pages8
JournalJournal of Physical Chemistry B
Volume118
Issue number19
DOIs
Publication statusPublished - May 15 2014
Externally publishedYes

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Light-harvesting ability of the fucoxanthin chlorophyll a/c-binding protein associated with photosystem II from the diatom chaetoceros gracilis as revealed by picosecond time-resolved fluorescence spectroscopy'. Together they form a unique fingerprint.

  • Cite this