Labeled configuration spaces and group completions

Kazuhisa Shimakawa

Research output: Contribution to journalArticle

Abstract

Given a pair of a partial abelian monoid M and a pointed space X, let CM(ℝ, X) denote the configuration space of finite distinct points in ℝ parametrized by the partial monoid X ∧ M. In this note we will show that if M is embedded in a topological abelian group and if we put ±M = {a - b

Original languageEnglish
Pages (from-to)353-364
Number of pages12
JournalForum Mathematicum
Volume19
Issue number2
DOIs
Publication statusPublished - Mar 20 2007

Fingerprint

Monoid
Configuration Space
Completion
Partial
Topological group
Abelian group
Denote
Distinct

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Labeled configuration spaces and group completions. / Shimakawa, Kazuhisa.

In: Forum Mathematicum, Vol. 19, No. 2, 20.03.2007, p. 353-364.

Research output: Contribution to journalArticle

Shimakawa, Kazuhisa. / Labeled configuration spaces and group completions. In: Forum Mathematicum. 2007 ; Vol. 19, No. 2. pp. 353-364.
@article{9891e15479b64f1694fa7024fe86c19f,
title = "Labeled configuration spaces and group completions",
abstract = "Given a pair of a partial abelian monoid M and a pointed space X, let CM(ℝ∞, X) denote the configuration space of finite distinct points in ℝ∞ parametrized by the partial monoid X ∧ M. In this note we will show that if M is embedded in a topological abelian group and if we put ±M = {a - b",
author = "Kazuhisa Shimakawa",
year = "2007",
month = "3",
day = "20",
doi = "10.1515/FORUM.2007.014",
language = "English",
volume = "19",
pages = "353--364",
journal = "Forum Mathematicum",
issn = "0933-7741",
publisher = "Walter de Gruyter GmbH & Co. KG",
number = "2",

}

TY - JOUR

T1 - Labeled configuration spaces and group completions

AU - Shimakawa, Kazuhisa

PY - 2007/3/20

Y1 - 2007/3/20

N2 - Given a pair of a partial abelian monoid M and a pointed space X, let CM(ℝ∞, X) denote the configuration space of finite distinct points in ℝ∞ parametrized by the partial monoid X ∧ M. In this note we will show that if M is embedded in a topological abelian group and if we put ±M = {a - b

AB - Given a pair of a partial abelian monoid M and a pointed space X, let CM(ℝ∞, X) denote the configuration space of finite distinct points in ℝ∞ parametrized by the partial monoid X ∧ M. In this note we will show that if M is embedded in a topological abelian group and if we put ±M = {a - b

UR - http://www.scopus.com/inward/record.url?scp=33947225813&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33947225813&partnerID=8YFLogxK

U2 - 10.1515/FORUM.2007.014

DO - 10.1515/FORUM.2007.014

M3 - Article

VL - 19

SP - 353

EP - 364

JO - Forum Mathematicum

JF - Forum Mathematicum

SN - 0933-7741

IS - 2

ER -