TY - JOUR
T1 - KMS states and branched points
AU - Izumi, Masaki
AU - Kajiwara, Tsuyoshi
AU - Watatani, Yasuo
PY - 2007/12
Y1 - 2007/12
N2 - We completely classify the Kubo-Martin-Schwinger (KMS) states for the gauge action on a C*-algebra associated with a rational function R introduced in our previous work. The gauge action has a phase transition at β = log deg R. We can recover the degree of R, the number of branched points, the number of exceptional points and the orbits of exceptional points from the structure of the KMS states. We also classify the KMS states for C*-algebras associated with some self-similar sets, including the full tent map and the Sierpinski gasket by a similar method.
AB - We completely classify the Kubo-Martin-Schwinger (KMS) states for the gauge action on a C*-algebra associated with a rational function R introduced in our previous work. The gauge action has a phase transition at β = log deg R. We can recover the degree of R, the number of branched points, the number of exceptional points and the orbits of exceptional points from the structure of the KMS states. We also classify the KMS states for C*-algebras associated with some self-similar sets, including the full tent map and the Sierpinski gasket by a similar method.
UR - http://www.scopus.com/inward/record.url?scp=36248955513&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36248955513&partnerID=8YFLogxK
U2 - 10.1017/S014338570700020X
DO - 10.1017/S014338570700020X
M3 - Article
AN - SCOPUS:36248955513
SN - 0143-3857
VL - 27
SP - 1887
EP - 1918
JO - Ergodic Theory and Dynamical Systems
JF - Ergodic Theory and Dynamical Systems
IS - 6
ER -