TY - JOUR
T1 - Isolation, characterization and expression analyses of FSH receptor in protogynous grouper
AU - Alam, Mohammad Ashraful
AU - Kobayashi, Yasuhisa
AU - Hirai, Toshiaki
AU - Nakamura, Masaru
PY - 2010/7
Y1 - 2010/7
N2 - Follicle-stimulating hormone (FSH) and its receptor (FSHR) play important roles in spermatogenesis. We cloned and characterized the honeycomb grouper Epinephelus merra FSHR (EmFSHR) to elucidate its role in the protogynous sex change in groupers. Reverse transcription-polymerase chain reaction (RT-PCR) analysis suggested that EmFSHR was expressed exclusively in the gonads. In situ hybridization showed the distribution of EmFSHR in the granulosa cells of previtellogenic oocytes and Leydig cells in the testis. Quantitative reverse transcription PCR (RT-qPCR) analysis of gonadal EmFSHR transcripts during the process of sex change indicated that the lowest levels were found in the female phase before sex change. EmFSHR transcripts increased during the early transitional phase, when oocytes began to degenerate in parallel with the initiation of gonial germ cell differentiation into spermatogonia. A dramatic increase in EmFSHR transcription occurred during the late transitional phase, when the gonad contained numerous proliferating male germ cells and many degenerated oocytes. EmFSHR expression remained high until the transformation from ovary to testis was complete. The data reveal that female to male sex change is associated with the upregulation of EmFSHR transcripts, and that this upregulation may be responsible for the development of testicular tissue and the progression of spermatogenesis. Furthermore, how the upregulation of EmFSHR is controlled in the initiation of sex change remains to be elucidated.
AB - Follicle-stimulating hormone (FSH) and its receptor (FSHR) play important roles in spermatogenesis. We cloned and characterized the honeycomb grouper Epinephelus merra FSHR (EmFSHR) to elucidate its role in the protogynous sex change in groupers. Reverse transcription-polymerase chain reaction (RT-PCR) analysis suggested that EmFSHR was expressed exclusively in the gonads. In situ hybridization showed the distribution of EmFSHR in the granulosa cells of previtellogenic oocytes and Leydig cells in the testis. Quantitative reverse transcription PCR (RT-qPCR) analysis of gonadal EmFSHR transcripts during the process of sex change indicated that the lowest levels were found in the female phase before sex change. EmFSHR transcripts increased during the early transitional phase, when oocytes began to degenerate in parallel with the initiation of gonial germ cell differentiation into spermatogonia. A dramatic increase in EmFSHR transcription occurred during the late transitional phase, when the gonad contained numerous proliferating male germ cells and many degenerated oocytes. EmFSHR expression remained high until the transformation from ovary to testis was complete. The data reveal that female to male sex change is associated with the upregulation of EmFSHR transcripts, and that this upregulation may be responsible for the development of testicular tissue and the progression of spermatogenesis. Furthermore, how the upregulation of EmFSHR is controlled in the initiation of sex change remains to be elucidated.
KW - FSHR
KW - Grouper
KW - Sex change
KW - cDNA
UR - http://www.scopus.com/inward/record.url?scp=77951978352&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951978352&partnerID=8YFLogxK
U2 - 10.1016/j.cbpa.2010.03.001
DO - 10.1016/j.cbpa.2010.03.001
M3 - Article
C2 - 20227511
AN - SCOPUS:77951978352
VL - 156
SP - 364
EP - 371
JO - Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology
JF - Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology
SN - 1095-6433
IS - 3
ER -