TY - JOUR
T1 - Isoform-specific functions of Mud/NuMA mediate binucleation of Drosophila male accessory gland cells
AU - Taniguchi, Kiichiro
AU - Kokuryo, Akihiko
AU - Imano, Takao
AU - Minami, Ryunosuke
AU - Nakagoshi, Hideki
AU - Adachi-Yamada, Takashi
N1 - Publisher Copyright:
© 2014 Taniguchi et al.
PY - 2014
Y1 - 2014
N2 - Background: In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear. We investigated them by characterizing the binucleation event during development of the Drosophila male accessory gland, in which all cells are binucleate. Results: The accessory gland cells arrested the cell cycle at 50 hours after puparium formation (APF) and in the middle of the pupal stage stopped proliferating for 5 hours. They then restarted the cell cycle and at 55 hours APF entered the M-phase synchronously. At this stage, accessory gland cells binucleated by mitosis without cytokinesis. Binucleating cells displayed the standard karyokinesis progression but also showed unusual features such as a non-round shape, spindle orientation along the apico-basal axis, and poor assembly of the central spindle. Mud, a Drosophila homolog of NuMA, regulated the processes responsible for these three features, the classical isoform MudPBD and the two newly characterized isoforms MudL and MudS regulated them differently: MudL repressed cell rounding, MudPBD and MudS oriented the spindle along the apico-basal axis, and MudS and MudL repressed central spindle assembly. Importantly, overexpression of MudS induced binucleation even in standard proliferating cells such as those in imaginal discs. Conclusions: We characterized the binucleation in the Drosophila male accessory gland and examined mechanisms that regulated unusual morphologies of binucleating cells. We demonstrated that Mud, a microtubule binding protein regulating spindle orientation, was involved in this binucleation. We suggest that atypical functions exerted by three structurally different isoforms of Mud regulate cell rounding, spindle orientation and central spindle assembly in binucleation. We also propose that MudS is a key regulator triggering cytokinesis skipping in binucleation processes.
AB - Background: In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear. We investigated them by characterizing the binucleation event during development of the Drosophila male accessory gland, in which all cells are binucleate. Results: The accessory gland cells arrested the cell cycle at 50 hours after puparium formation (APF) and in the middle of the pupal stage stopped proliferating for 5 hours. They then restarted the cell cycle and at 55 hours APF entered the M-phase synchronously. At this stage, accessory gland cells binucleated by mitosis without cytokinesis. Binucleating cells displayed the standard karyokinesis progression but also showed unusual features such as a non-round shape, spindle orientation along the apico-basal axis, and poor assembly of the central spindle. Mud, a Drosophila homolog of NuMA, regulated the processes responsible for these three features, the classical isoform MudPBD and the two newly characterized isoforms MudL and MudS regulated them differently: MudL repressed cell rounding, MudPBD and MudS oriented the spindle along the apico-basal axis, and MudS and MudL repressed central spindle assembly. Importantly, overexpression of MudS induced binucleation even in standard proliferating cells such as those in imaginal discs. Conclusions: We characterized the binucleation in the Drosophila male accessory gland and examined mechanisms that regulated unusual morphologies of binucleating cells. We demonstrated that Mud, a microtubule binding protein regulating spindle orientation, was involved in this binucleation. We suggest that atypical functions exerted by three structurally different isoforms of Mud regulate cell rounding, spindle orientation and central spindle assembly in binucleation. We also propose that MudS is a key regulator triggering cytokinesis skipping in binucleation processes.
KW - Binucleation
KW - Cell rounding
KW - Central spindle
KW - Cytokinesis
KW - Drosophila
KW - Male accessory gland
KW - Mud
KW - Spindle orientation
UR - http://www.scopus.com/inward/record.url?scp=84964312443&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964312443&partnerID=8YFLogxK
U2 - 10.1186/s12861-014-0046-5
DO - 10.1186/s12861-014-0046-5
M3 - Article
C2 - 25527079
AN - SCOPUS:84964312443
SN - 1471-213X
VL - 14
JO - BMC Developmental Biology
JF - BMC Developmental Biology
IS - 1
M1 - 46
ER -