Involvement of local intercellular communication in the differentiation of zinnia mesophyll cells into tracheary elements

Hiroyasu Motose, Hiroo Fukuda, Munetaka Sugiyama

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

The transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans L.) into tracheary elements (TEs) has been well studied as a model of plant cell differentiation. In order to investigate intercellular communication in this phenomenon, two types of culture method were developed, in which mesophyll cells were embedded in a thin sheet of agarose gel and cultured on solid medium, or embedded in microbeads of agarose gel and cultured in liquid medium. A statistical analysis of the two-dimensional distribution of TEs in the thin-sheet cultures demonstrated their aggregation. In the microbead cultures, the frequency of TE differentiation was shown to depend on the local cell density (the cell density in each microbead): TE differentiation required local cell densities of more than 105 cells ml-1. These results suggest that TE differentiation involves cell-cell communication mediated by a locally acting diffusible factor. This presumptive factor was characterized by applying a modified version of the sheet culture, which used two sheets of different cell densities, a low-density sheet and a high-density sheet. Differentiation of TEs in the former could be induced only by bringing it into contact with the latter. Insertion of a 25-kDa-cutoff membrane between the high-density and low-density sheets severely suppressed such induction of TEs in the low-density sheet while a 300-kDa-cutoff membrane suppressed induction only slightly. Insertion of agarose sheets containing immobilized pronase E or trypsin also interfered with the induction of TEs in the low-density sheets. Thus, a proteinaceous macromolecule of 25-300 kDa in molecular weight was assumed to mediate the local intercellular communication required for TE differentiation. This substance was designated "xylogen" with reference to its xylogenic activity. The time of requirement for xylogen during TE differentiation was assessed by experiments in which cells in the low-density sheet were separated from xylogen produced in the high-density sheet at various times by insertion of a 25-kDa-cutoff membrane between the two sheets, and was estimated to be from the 36th hour to the 60th hour of culture (12-36 h before visible thickening of secondary cell walls of TEs).

Original languageEnglish
Pages (from-to)121-131
Number of pages11
JournalPlanta
Volume213
Issue number1
DOIs
Publication statusPublished - 2001
Externally publishedYes

Fingerprint

Mesophyll Cells
Zinnia
tracheary elements
cell communication
mesophyll
Cell Count
Microspheres
Sepharose
Membranes
Cell Differentiation
Gels
cells
Pronase
Plant Cells
Cell Communication
Trypsin
Cell Wall
agarose
Molecular Weight
gels

Keywords

  • Intercellular communication (local)
  • Tracheary element differentiation
  • Xylogen
  • Zinnia (tracheary element)

ASJC Scopus subject areas

  • Plant Science

Cite this

Involvement of local intercellular communication in the differentiation of zinnia mesophyll cells into tracheary elements. / Motose, Hiroyasu; Fukuda, Hiroo; Sugiyama, Munetaka.

In: Planta, Vol. 213, No. 1, 2001, p. 121-131.

Research output: Contribution to journalArticle

@article{40638ef6849b47f9bebe024500ffaa2f,
title = "Involvement of local intercellular communication in the differentiation of zinnia mesophyll cells into tracheary elements",
abstract = "The transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans L.) into tracheary elements (TEs) has been well studied as a model of plant cell differentiation. In order to investigate intercellular communication in this phenomenon, two types of culture method were developed, in which mesophyll cells were embedded in a thin sheet of agarose gel and cultured on solid medium, or embedded in microbeads of agarose gel and cultured in liquid medium. A statistical analysis of the two-dimensional distribution of TEs in the thin-sheet cultures demonstrated their aggregation. In the microbead cultures, the frequency of TE differentiation was shown to depend on the local cell density (the cell density in each microbead): TE differentiation required local cell densities of more than 105 cells ml-1. These results suggest that TE differentiation involves cell-cell communication mediated by a locally acting diffusible factor. This presumptive factor was characterized by applying a modified version of the sheet culture, which used two sheets of different cell densities, a low-density sheet and a high-density sheet. Differentiation of TEs in the former could be induced only by bringing it into contact with the latter. Insertion of a 25-kDa-cutoff membrane between the high-density and low-density sheets severely suppressed such induction of TEs in the low-density sheet while a 300-kDa-cutoff membrane suppressed induction only slightly. Insertion of agarose sheets containing immobilized pronase E or trypsin also interfered with the induction of TEs in the low-density sheets. Thus, a proteinaceous macromolecule of 25-300 kDa in molecular weight was assumed to mediate the local intercellular communication required for TE differentiation. This substance was designated {"}xylogen{"} with reference to its xylogenic activity. The time of requirement for xylogen during TE differentiation was assessed by experiments in which cells in the low-density sheet were separated from xylogen produced in the high-density sheet at various times by insertion of a 25-kDa-cutoff membrane between the two sheets, and was estimated to be from the 36th hour to the 60th hour of culture (12-36 h before visible thickening of secondary cell walls of TEs).",
keywords = "Intercellular communication (local), Tracheary element differentiation, Xylogen, Zinnia (tracheary element)",
author = "Hiroyasu Motose and Hiroo Fukuda and Munetaka Sugiyama",
year = "2001",
doi = "10.1007/s004250000482",
language = "English",
volume = "213",
pages = "121--131",
journal = "Planta",
issn = "0032-0935",
publisher = "Springer Verlag",
number = "1",

}

TY - JOUR

T1 - Involvement of local intercellular communication in the differentiation of zinnia mesophyll cells into tracheary elements

AU - Motose, Hiroyasu

AU - Fukuda, Hiroo

AU - Sugiyama, Munetaka

PY - 2001

Y1 - 2001

N2 - The transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans L.) into tracheary elements (TEs) has been well studied as a model of plant cell differentiation. In order to investigate intercellular communication in this phenomenon, two types of culture method were developed, in which mesophyll cells were embedded in a thin sheet of agarose gel and cultured on solid medium, or embedded in microbeads of agarose gel and cultured in liquid medium. A statistical analysis of the two-dimensional distribution of TEs in the thin-sheet cultures demonstrated their aggregation. In the microbead cultures, the frequency of TE differentiation was shown to depend on the local cell density (the cell density in each microbead): TE differentiation required local cell densities of more than 105 cells ml-1. These results suggest that TE differentiation involves cell-cell communication mediated by a locally acting diffusible factor. This presumptive factor was characterized by applying a modified version of the sheet culture, which used two sheets of different cell densities, a low-density sheet and a high-density sheet. Differentiation of TEs in the former could be induced only by bringing it into contact with the latter. Insertion of a 25-kDa-cutoff membrane between the high-density and low-density sheets severely suppressed such induction of TEs in the low-density sheet while a 300-kDa-cutoff membrane suppressed induction only slightly. Insertion of agarose sheets containing immobilized pronase E or trypsin also interfered with the induction of TEs in the low-density sheets. Thus, a proteinaceous macromolecule of 25-300 kDa in molecular weight was assumed to mediate the local intercellular communication required for TE differentiation. This substance was designated "xylogen" with reference to its xylogenic activity. The time of requirement for xylogen during TE differentiation was assessed by experiments in which cells in the low-density sheet were separated from xylogen produced in the high-density sheet at various times by insertion of a 25-kDa-cutoff membrane between the two sheets, and was estimated to be from the 36th hour to the 60th hour of culture (12-36 h before visible thickening of secondary cell walls of TEs).

AB - The transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans L.) into tracheary elements (TEs) has been well studied as a model of plant cell differentiation. In order to investigate intercellular communication in this phenomenon, two types of culture method were developed, in which mesophyll cells were embedded in a thin sheet of agarose gel and cultured on solid medium, or embedded in microbeads of agarose gel and cultured in liquid medium. A statistical analysis of the two-dimensional distribution of TEs in the thin-sheet cultures demonstrated their aggregation. In the microbead cultures, the frequency of TE differentiation was shown to depend on the local cell density (the cell density in each microbead): TE differentiation required local cell densities of more than 105 cells ml-1. These results suggest that TE differentiation involves cell-cell communication mediated by a locally acting diffusible factor. This presumptive factor was characterized by applying a modified version of the sheet culture, which used two sheets of different cell densities, a low-density sheet and a high-density sheet. Differentiation of TEs in the former could be induced only by bringing it into contact with the latter. Insertion of a 25-kDa-cutoff membrane between the high-density and low-density sheets severely suppressed such induction of TEs in the low-density sheet while a 300-kDa-cutoff membrane suppressed induction only slightly. Insertion of agarose sheets containing immobilized pronase E or trypsin also interfered with the induction of TEs in the low-density sheets. Thus, a proteinaceous macromolecule of 25-300 kDa in molecular weight was assumed to mediate the local intercellular communication required for TE differentiation. This substance was designated "xylogen" with reference to its xylogenic activity. The time of requirement for xylogen during TE differentiation was assessed by experiments in which cells in the low-density sheet were separated from xylogen produced in the high-density sheet at various times by insertion of a 25-kDa-cutoff membrane between the two sheets, and was estimated to be from the 36th hour to the 60th hour of culture (12-36 h before visible thickening of secondary cell walls of TEs).

KW - Intercellular communication (local)

KW - Tracheary element differentiation

KW - Xylogen

KW - Zinnia (tracheary element)

UR - http://www.scopus.com/inward/record.url?scp=0034986277&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034986277&partnerID=8YFLogxK

U2 - 10.1007/s004250000482

DO - 10.1007/s004250000482

M3 - Article

C2 - 11523648

AN - SCOPUS:0034986277

VL - 213

SP - 121

EP - 131

JO - Planta

JF - Planta

SN - 0032-0935

IS - 1

ER -