Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis

Mohammad Anowar Hossain, Shintaro Munemasa, Misugi Uraji, Yoshimasa Nakamura, Izumi Mori, Yoshiyuki Murata

Research output: Contribution to journalArticle

102 Citations (Scopus)

Abstract

In this study, we examined the involvement of endogenous abscisic acid (ABA) in methyl jasmonate (MeJA)-induced stomatal closure using an inhibitor of ABA biosynthesis, fluridon (FLU), and an ABA-deficient Arabidopsis (Arabidopsis thaliana) mutant, aba2-2.We found that pretreatment with FLU inhibited MeJA-induced stomatal closure but not ABA-induced stomatal closure in wild-type plants. The aba2-2 mutation impaired MeJA-induced stomatal closure but not ABA-induced stomatal closure. We also investigated the effects of FLU and the aba2-2 mutation on cytosolic free calcium concentration ([Ca2+]cyt) in guard cells using a Ca2+-reporter fluorescent protein, Yellow Cameleon 3.6. In wild-type guard cells, FLU inhibited MeJA-induced [Ca2+]cyt elevation but not ABA-induced [Ca2+]cyt elevation. The aba2-2 mutation did not affect ABA-elicited [Ca2+]cyt elevation but suppressed MeJA-induced [Ca2+]cyt elevation. We also tested the effects of the aba2-2 mutation and FLU on the expression of MeJA-inducible VEGETATIVE STORAGE PROTEIN1 (VSP1). In the aba2-2 mutant, MeJA did not induce VSP1 expression. In wild-type leaves, FLU inhibited MeJA-induced VSP1 expression. Pretreatment with ABA at 0.1 μM, which is not enough concentration to evoke ABA responses in the wild type, rescued the observed phenotypes of the aba2-2 mutant. Finally, we found that in wild-type leaves, MeJA stimulates the expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE3, which encodes a crucial enzyme in ABA biosynthesis. These results suggest that endogenous ABA could be involved in MeJA signal transduction and lead to stomatal closure in Arabidopsis guard cells.

Original languageEnglish
Pages (from-to)430-438
Number of pages9
JournalPlant Physiology
Volume156
Issue number1
DOIs
Publication statusPublished - May 2011

Fingerprint

Abscisic Acid
methyl jasmonate
Arabidopsis
abscisic acid
calcium
guard cells
mutation
Mutation
mutants
pretreatment
biosynthesis
signal transduction
leaves
Signal Transduction
Arabidopsis thaliana

ASJC Scopus subject areas

  • Plant Science
  • Genetics
  • Physiology
  • Medicine(all)

Cite this

Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. / Hossain, Mohammad Anowar; Munemasa, Shintaro; Uraji, Misugi; Nakamura, Yoshimasa; Mori, Izumi; Murata, Yoshiyuki.

In: Plant Physiology, Vol. 156, No. 1, 05.2011, p. 430-438.

Research output: Contribution to journalArticle

@article{97136ace35514051aada212ac7c1c55a,
title = "Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis",
abstract = "In this study, we examined the involvement of endogenous abscisic acid (ABA) in methyl jasmonate (MeJA)-induced stomatal closure using an inhibitor of ABA biosynthesis, fluridon (FLU), and an ABA-deficient Arabidopsis (Arabidopsis thaliana) mutant, aba2-2.We found that pretreatment with FLU inhibited MeJA-induced stomatal closure but not ABA-induced stomatal closure in wild-type plants. The aba2-2 mutation impaired MeJA-induced stomatal closure but not ABA-induced stomatal closure. We also investigated the effects of FLU and the aba2-2 mutation on cytosolic free calcium concentration ([Ca2+]cyt) in guard cells using a Ca2+-reporter fluorescent protein, Yellow Cameleon 3.6. In wild-type guard cells, FLU inhibited MeJA-induced [Ca2+]cyt elevation but not ABA-induced [Ca2+]cyt elevation. The aba2-2 mutation did not affect ABA-elicited [Ca2+]cyt elevation but suppressed MeJA-induced [Ca2+]cyt elevation. We also tested the effects of the aba2-2 mutation and FLU on the expression of MeJA-inducible VEGETATIVE STORAGE PROTEIN1 (VSP1). In the aba2-2 mutant, MeJA did not induce VSP1 expression. In wild-type leaves, FLU inhibited MeJA-induced VSP1 expression. Pretreatment with ABA at 0.1 μM, which is not enough concentration to evoke ABA responses in the wild type, rescued the observed phenotypes of the aba2-2 mutant. Finally, we found that in wild-type leaves, MeJA stimulates the expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE3, which encodes a crucial enzyme in ABA biosynthesis. These results suggest that endogenous ABA could be involved in MeJA signal transduction and lead to stomatal closure in Arabidopsis guard cells.",
author = "Hossain, {Mohammad Anowar} and Shintaro Munemasa and Misugi Uraji and Yoshimasa Nakamura and Izumi Mori and Yoshiyuki Murata",
year = "2011",
month = "5",
doi = "10.1104/pp.111.172254",
language = "English",
volume = "156",
pages = "430--438",
journal = "Plant Physiology",
issn = "0032-0889",
publisher = "American Society of Plant Biologists",
number = "1",

}

TY - JOUR

T1 - Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis

AU - Hossain, Mohammad Anowar

AU - Munemasa, Shintaro

AU - Uraji, Misugi

AU - Nakamura, Yoshimasa

AU - Mori, Izumi

AU - Murata, Yoshiyuki

PY - 2011/5

Y1 - 2011/5

N2 - In this study, we examined the involvement of endogenous abscisic acid (ABA) in methyl jasmonate (MeJA)-induced stomatal closure using an inhibitor of ABA biosynthesis, fluridon (FLU), and an ABA-deficient Arabidopsis (Arabidopsis thaliana) mutant, aba2-2.We found that pretreatment with FLU inhibited MeJA-induced stomatal closure but not ABA-induced stomatal closure in wild-type plants. The aba2-2 mutation impaired MeJA-induced stomatal closure but not ABA-induced stomatal closure. We also investigated the effects of FLU and the aba2-2 mutation on cytosolic free calcium concentration ([Ca2+]cyt) in guard cells using a Ca2+-reporter fluorescent protein, Yellow Cameleon 3.6. In wild-type guard cells, FLU inhibited MeJA-induced [Ca2+]cyt elevation but not ABA-induced [Ca2+]cyt elevation. The aba2-2 mutation did not affect ABA-elicited [Ca2+]cyt elevation but suppressed MeJA-induced [Ca2+]cyt elevation. We also tested the effects of the aba2-2 mutation and FLU on the expression of MeJA-inducible VEGETATIVE STORAGE PROTEIN1 (VSP1). In the aba2-2 mutant, MeJA did not induce VSP1 expression. In wild-type leaves, FLU inhibited MeJA-induced VSP1 expression. Pretreatment with ABA at 0.1 μM, which is not enough concentration to evoke ABA responses in the wild type, rescued the observed phenotypes of the aba2-2 mutant. Finally, we found that in wild-type leaves, MeJA stimulates the expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE3, which encodes a crucial enzyme in ABA biosynthesis. These results suggest that endogenous ABA could be involved in MeJA signal transduction and lead to stomatal closure in Arabidopsis guard cells.

AB - In this study, we examined the involvement of endogenous abscisic acid (ABA) in methyl jasmonate (MeJA)-induced stomatal closure using an inhibitor of ABA biosynthesis, fluridon (FLU), and an ABA-deficient Arabidopsis (Arabidopsis thaliana) mutant, aba2-2.We found that pretreatment with FLU inhibited MeJA-induced stomatal closure but not ABA-induced stomatal closure in wild-type plants. The aba2-2 mutation impaired MeJA-induced stomatal closure but not ABA-induced stomatal closure. We also investigated the effects of FLU and the aba2-2 mutation on cytosolic free calcium concentration ([Ca2+]cyt) in guard cells using a Ca2+-reporter fluorescent protein, Yellow Cameleon 3.6. In wild-type guard cells, FLU inhibited MeJA-induced [Ca2+]cyt elevation but not ABA-induced [Ca2+]cyt elevation. The aba2-2 mutation did not affect ABA-elicited [Ca2+]cyt elevation but suppressed MeJA-induced [Ca2+]cyt elevation. We also tested the effects of the aba2-2 mutation and FLU on the expression of MeJA-inducible VEGETATIVE STORAGE PROTEIN1 (VSP1). In the aba2-2 mutant, MeJA did not induce VSP1 expression. In wild-type leaves, FLU inhibited MeJA-induced VSP1 expression. Pretreatment with ABA at 0.1 μM, which is not enough concentration to evoke ABA responses in the wild type, rescued the observed phenotypes of the aba2-2 mutant. Finally, we found that in wild-type leaves, MeJA stimulates the expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE3, which encodes a crucial enzyme in ABA biosynthesis. These results suggest that endogenous ABA could be involved in MeJA signal transduction and lead to stomatal closure in Arabidopsis guard cells.

UR - http://www.scopus.com/inward/record.url?scp=79956097502&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79956097502&partnerID=8YFLogxK

U2 - 10.1104/pp.111.172254

DO - 10.1104/pp.111.172254

M3 - Article

C2 - 21402795

AN - SCOPUS:79956097502

VL - 156

SP - 430

EP - 438

JO - Plant Physiology

JF - Plant Physiology

SN - 0032-0889

IS - 1

ER -