Invadopodia proteins, cortactin, N-WASP and WIP differentially promote local invasiveness in ameloblastoma

Chong Huat Siar, Zainal Ariff Bin Abdul Rahman, Hidetsugu Tsujigiwa, Kamila Mohamed Om Alblazi, Hitoshi Nagatsuka, Kok Han Ng

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Background: Cell migration and invasion through interstitial tissues are dependent upon several specialized characteristics of the migratory cell notably generation of proteolytic membranous protrusions or invadopodia. Ameloblastoma is a benign odontogenic epithelial neoplasm with a locally infiltrative behaviour. Cortactin and MMT1-MMP are two invadopodia proteins implicated in its local invasiveness. Other invadopodia regulators, namely N-WASP, WIP and Src kinase remain unclarified. This study addresses their roles in ameloblastoma. Materials and method: Eighty-seven paraffin-embedded ameloblastoma cases (20 unicystic, 47 solid/multicystic, 3 desmoplastic and 17 recurrent) were subjected to immunohistochemistry for expression of cortactin, N-WASP, WIP, Src kinase and F-actin, and findings correlated with clinicopathological parameters. Results: Invadopodia proteins (except Src kinase) and F-actin were widely detected in ameloblastoma (cortactin: n = 73/87, 83.9%; N-WASP: n = 59/87; 67.8%; WIP: n = 77/87; 88.5%; and F-actin: n = 87/87, 100%). Protein localization was mainly cytoplasmic and/or membranous, and occasionally nuclear for F-actin. Cortactin, which functions as an actin-scaffolding protein, demonstrated significantly higher expression levels within ameloblastoma tumoral epithelium than in stroma (P < 0.05). N-WASP, which coordinates actin polymerization and invadopodia-mediated extracellular matrix degradation, was overexpressed in the solid/multicystic subtype (P < 0.05). WIP, an upstream regulator of N-WASP, and F-actin were significantly upregulated along the tumour invasive front compared to tumour centres (P < 0.05). Except for males with cortactin overexpression, other clinical parameters (age, ethnicity and anatomical site) showed no significant correlations. Conclusions: Present results suggest that local invasiveness of ameloblastoma is dependent upon the migratory potential of its tumour cells as defined by their distribution of cortactin, N-WASP and WIP in correlation with F-actin cytoskeletal dynamics.

Original languageEnglish
Pages (from-to)591-598
Number of pages8
JournalJournal of Oral Pathology and Medicine
Volume45
Issue number8
DOIs
Publication statusPublished - Sep 1 2016

Keywords

  • N-WASP
  • WIP
  • ameloblastoma
  • cortactin

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Oral Surgery
  • Otorhinolaryngology
  • Cancer Research
  • Periodontics

Fingerprint Dive into the research topics of 'Invadopodia proteins, cortactin, N-WASP and WIP differentially promote local invasiveness in ameloblastoma'. Together they form a unique fingerprint.

  • Cite this