Abstract
Objectives: To examine anti-adhesion and anti-biofilm effects of a diamond-like carbon coating deposited via a novel technique on the inner surface of a thin silicon tube. Methods: Diamond-like carbon coatings were deposited into the lumen of a silicon tube with inner diameters of 2 mm. The surface of the diamond-like carbon was evaluated using physicochemical methods. We used three clinical isolates including green fluorescent protein-expressing Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus. We employed a continuous flow system for evaluation of both bacterial adhesion and biofilm formation. Bacterial adhesion assays consisted of counting the number of colony-forming units and visualization of adhered bacterial cells by scanning electron microscope to evaluate the diamond-like carbon-coated/uncoated samples. The biofilm structure was analyzed by confocal laser scanning microscopy on days 3, 5, 7 and 14 for green fluorescent protein-expressing Pseudomonas aeruginosa. Results: The smooth and carbon-rich structure of the intraluminal diamond-like carbon film remained unchanged after the experiments. The numbers of colony-forming units suggested lower adherence of green fluorescent protein-expressing Pseudomonas aeruginosa and Escherichia coli in the diamond-like carbon-coated samples compared with the uncoated samples. The scanning electron microscope images showed adhered green fluorescent protein-expressing Pseudomonas aeruginosa cells without formation of microcolonies on the diamond-like carbon-coated samples. Finally, biofilm formation on the diamond-like carbon-coated samples was lower until at least day 14 compared with the uncoated samples. Conclusions: Intraluminal diamond-like carbon coating on a silicone tube has anti-adhesion and anti-biofilm effects. This technology can be applied to urinary catheters made from various materials.
Original language | English |
---|---|
Pages (from-to) | 1282-1289 |
Number of pages | 8 |
Journal | International Journal of Urology |
Volume | 28 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2021 |
Keywords
- bacterial adhesion
- biofilms
- plasma gases
- urinary catheters
- urinary tract infection
ASJC Scopus subject areas
- Urology