Inhibition of virus DNA replication by artificial zinc finger proteins

Research output: Contribution to journalArticle

56 Citations (Scopus)

Abstract

Prevention of virus infections is a major objective in agriculture and human health. One attractive approach to the prevention is inhibition of virus replication. To demonstrate this concept in vivo, an artificial zinc finger protein (AZP) targeting the replication origin of the Beet severe curly top virus (BSCTV), a model DNA virus, was created. In vitro DNA binding assays indicated that the AZP efficiently blocked binding of the viral replication protein (Rep), which initiates virus replication, to the replication origin. All of the transgenic Arabidopsis plants expressing the AZP showed phenotypes strongly resistant to virus infection, and 84% of the transgenic plants showed no symptom. Southern blot analysis demonstrated that BSCTV replication was completely suppressed in the transgenic plants. Since the mechanism of viral DNA replication is well conserved among plants and mammals, this approach could be applied not only to agricultural crop protection but also to the prevention of virus infections in humans.

Original languageEnglish
Pages (from-to)2614-2619
Number of pages6
JournalJournal of Virology
Volume79
Issue number4
DOIs
Publication statusPublished - Feb 1 2005

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Inhibition of virus DNA replication by artificial zinc finger proteins'. Together they form a unique fingerprint.

  • Cite this