Inhibition of DNA replication of human papillornavirus by artificial zinc finger proteins

Takashi Mino, Takeaki Hatono, Naoki Matsumoto, Tomoaki Mori, Yusuke Mineta, Yasuhiro Aoyama, Takashi Sera

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Recently, we demonstrated that plant DNA virus replication was inhibited in planta by using an artificial zinc finger protein (AZP) and created AZP-based transgenic plants resistant to DNA virus infection. Here we apply the AZP technology to the inhibition of replication of a mammalian DNA virus, human papillomavirus type 18 (HPV-18). Two AZPs, designated AZPHPV-1 and AZPHPV-2, were designed by using our nondegenerate recognition code table and were constructed to block binding of the HPV-18 E2 replication protein to the replication origin. Both of the newly designed AZPs had much higher affinities towards the replication origin than did the E2 protein, and they efficiently blocked E2 binding in vitro. In transient replication assays, both AZPs inhibited viral DNA replication, especially AZPHPV-2, which reduced the replication level to approximately 10%. We also demonstrated in transient replication assays, using plasmids with mutant replication origins, that AZPHPV-2 could precisely recognize the replication origin in mammalian cells. Thus, it was demonstrated that the AZP technology could be applied not only to plant DNA viruses but also to mammalian DNA viruses.

Original languageEnglish
Pages (from-to)5405-5412
Number of pages8
JournalJournal of Virology
Volume80
Issue number11
DOIs
Publication statusPublished - Jun 2006

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Inhibition of DNA replication of human papillornavirus by artificial zinc finger proteins'. Together they form a unique fingerprint.

  • Cite this