TY - JOUR
T1 - In vivo study on mechanism underlying increased pharmacological effects of phenobarbital in rats with glycerol-induced acute renal failure
AU - Okada, Atsuyoshi
AU - Suzuki, Keiichiro
AU - Hara, Keisuke
AU - Kojina, Moeko
AU - Aiba, Tetsuya
N1 - Funding Information:
Acknowledgments This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Sciences (15K08097).
Funding Information:
This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Sciences (15K08097).
Publisher Copyright:
© 2019 The Pharmaceutical Society of Japan.
PY - 2019
Y1 - 2019
N2 - The mechanism underlying the increased pharmacological effects of phenobarbital in rats with glycerol-induced acute renal failure (ARF) was examined. In the experiments, a surgical cannula was inserted in the lateral ventricle of the rats for phenobarbital infusion, and the ARF induction was performed by intramuscular administration of 50% glycerol. The onset time of anesthesia by phenobarbital was determined with the tail flick method. In addition, cerebral microsomes were prepared from excised cerebral cortices of sham and ARF rats, and the cerebral expression of the γ-aminobutyric acid (GABA) A receptor and two cation-chloride transporters, KCC2 and NKCC1, was evaluated by Western blotting, as their functions are involved in the anesthetic effects of phenobarbital. When phenobarbital was infused in the ventricle, anesthesia was induced 2.2-times faster in ARF rats than in sham rats, and there was no detectable increase in the cerebral expression of the GABA A receptor in ARF rats. It was additionally noted that the cerebral expression of KCC2 decreased, whereas that of NKCC1 was unaltered in ARF rats. These findings indicated that the anesthetic effects of phenobarbital are potentiated in ARF rats, probably due to imbalanced cerebral expression of KCC2 and NKCC1, suggesting that altered cation-chloride handling in nerve cells is associated.
AB - The mechanism underlying the increased pharmacological effects of phenobarbital in rats with glycerol-induced acute renal failure (ARF) was examined. In the experiments, a surgical cannula was inserted in the lateral ventricle of the rats for phenobarbital infusion, and the ARF induction was performed by intramuscular administration of 50% glycerol. The onset time of anesthesia by phenobarbital was determined with the tail flick method. In addition, cerebral microsomes were prepared from excised cerebral cortices of sham and ARF rats, and the cerebral expression of the γ-aminobutyric acid (GABA) A receptor and two cation-chloride transporters, KCC2 and NKCC1, was evaluated by Western blotting, as their functions are involved in the anesthetic effects of phenobarbital. When phenobarbital was infused in the ventricle, anesthesia was induced 2.2-times faster in ARF rats than in sham rats, and there was no detectable increase in the cerebral expression of the GABA A receptor in ARF rats. It was additionally noted that the cerebral expression of KCC2 decreased, whereas that of NKCC1 was unaltered in ARF rats. These findings indicated that the anesthetic effects of phenobarbital are potentiated in ARF rats, probably due to imbalanced cerebral expression of KCC2 and NKCC1, suggesting that altered cation-chloride handling in nerve cells is associated.
KW - Acute renal failure
KW - Anesthesia
KW - KCC2
KW - NKCC1
KW - Phenobarbital
UR - http://www.scopus.com/inward/record.url?scp=85062398400&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062398400&partnerID=8YFLogxK
U2 - 10.1248/bpb.b18-00659
DO - 10.1248/bpb.b18-00659
M3 - Article
C2 - 30828081
AN - SCOPUS:85062398400
SN - 0918-6158
VL - 42
SP - 501
EP - 506
JO - Biological and Pharmaceutical Bulletin
JF - Biological and Pharmaceutical Bulletin
IS - 3
ER -