In vitro evaluation of chelate-setting cements fabricated from silicon-containing apatite powder using osteoblastic cells

Yusuke Nakashima, Michiyo Honda, Toshiisa Konishi, Minori Mizumoto, Mamoru Aizawa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In our previous study, silicon-containing hydroxyapatite (Si-HAp) powder was prepared via an aqueous precipitation reaction. The Si-HAp powders were synthesized with desired Si contents (0, 0.4, 0.8, 1.6, and 2.4 mass%) as a nominal composition. Another previous study in our group demonstrated surface-modification of HAp powder with inositol phosphate (IP6) enhanced the compressive strength of apatite cement. Thus, to fabricate the cements with higher bioactivity, the above Si-HAp powders were surface-modified with IP6 (IP6-Si-HAp). The IP6-Si-HAp cements with various Si contents were fabricated by mixing with pure water at the powder/liquid ratio of 1/0.4 [w/v]. In order to clarify biocompatibility of the IP6-Si-HAP cements in the present work, MC3T3-E1 cells as a model of osteoblast were seeded on the cement specimens. As for the numbers of cells cultured on the IP6-Si-HAp cements, the substitution of lower levels of Si into HAp lattice did not greatly influence the cell proliferation. However, the substitution of Si amount over 0.8 mass% enhanced the cell proliferation. Especially, the IP6-Si-HAp cement with the Si content of 2.4 mass% showed excellent cell proliferation among examined specimens. Therefore, to fabricate the cements with higher bioactivity, it is necessary to control the amount of Si in the IP6-Si-HAp cements. The usage of these IP6-Si-HAp cements may make it possible to fabricate the cements with higher bioactivity, compare to conventional pure HAp cements.

Original languageEnglish
Title of host publicationBioceramics 24
PublisherTrans Tech Publications Ltd
Pages183-186
Number of pages4
Edition1
ISBN (Print)9783037855171
DOIs
Publication statusPublished - 2013
Event24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012 - Fukuoka, Japan
Duration: Oct 21 2012Oct 24 2012

Publication series

NameKey Engineering Materials
Number1
Volume529-530
ISSN (Print)1013-9826
ISSN (Electronic)1662-9795

Other

Other24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012
Country/TerritoryJapan
CityFukuoka
Period10/21/1210/24/12

Keywords

  • Apatite
  • Cement
  • Osteoblast
  • Silicon
  • Silicon-containing hydroxyapatite

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'In vitro evaluation of chelate-setting cements fabricated from silicon-containing apatite powder using osteoblastic cells'. Together they form a unique fingerprint.

Cite this