In vitro activity of cethromycin against Burkholderia pseudomallei and investigation of mechanism of resistance

Takehiko Mima, Herbert P. Schweizer, Ze Qi Xu

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Objectives: Most Burkholderia pseudomallei strains are intrinsically resistant to macrolides, mainly due to AmrAB-OprA- and/or BpeAB-OprB-mediated efflux. We assessed the in vitro anti-B. pseudomallei efficacy of cethromycin, a novel ketolide with broad-spectrum activity against Gram-negative and Gram-positive pathogens. Methods: The 2-fold broth microdilution technique was used to assess the in vitro cethromycin susceptibility of a prototype strain, efflux mutants, and a panel of 60 clinical and environmental strains. Time-kill curves were used to assess the mode of action. Spontaneous resistant mutants were isolated and AmrAB-OprA efflux pump expression assessed by quantitative real-time PCR. Deletion and complementation analyses were performed to demonstrate AmrAB-OprA efflux pump mutant involvement in high-level cethromycin resistance. Results: In contrast to macrolides, cethromycin was a weak substrate of AmrAB-OprA and BpeAB-OprB. Cethromycin was bactericidal at high concentrations and bacteriostatic at MIC levels. The ketolide showed efficacy against clinical and environmental strains of B. pseudomallei, with MIC values ranging from 4 to 64 mg/L. Environmental isolates were consistently more susceptible than clinical isolates. High-level cethromycin resistance (MIC 128 mg/L) was due to constitutive AmrAB-OprA efflux pump overexpression, but other mechanisms also seem to contribute. Conclusions: In contrast to macrolides, which are readily effluxed, cethromycin is weakly extruded in wild-type strains and thus demonstrates significant in vitro anti-B. pseudomallei activity against diverse strains. Acquired high-level cethromycin resistance is caused by constitutive AmrAB-OprA efflux pump overexpression and other, probably non-efflux, mechanisms may also contribute to lower-level acquired resistance.

Original languageEnglish
Article numberdkq391
Pages (from-to)73-78
Number of pages6
JournalJournal of Antimicrobial Chemotherapy
Volume66
Issue number1
DOIs
Publication statusPublished - Jan 2011
Externally publishedYes

Fingerprint

cethromycin
Burkholderia pseudomallei
Macrolides
Ketolides
In Vitro Techniques

Keywords

  • Efflux
  • Ketolides
  • Melioidosis
  • Therapy

ASJC Scopus subject areas

  • Pharmacology
  • Pharmacology (medical)
  • Infectious Diseases

Cite this

In vitro activity of cethromycin against Burkholderia pseudomallei and investigation of mechanism of resistance. / Mima, Takehiko; Schweizer, Herbert P.; Xu, Ze Qi.

In: Journal of Antimicrobial Chemotherapy, Vol. 66, No. 1, dkq391, 01.2011, p. 73-78.

Research output: Contribution to journalArticle

@article{4e7ac8fba0ea4b789e12ed5baf556b44,
title = "In vitro activity of cethromycin against Burkholderia pseudomallei and investigation of mechanism of resistance",
abstract = "Objectives: Most Burkholderia pseudomallei strains are intrinsically resistant to macrolides, mainly due to AmrAB-OprA- and/or BpeAB-OprB-mediated efflux. We assessed the in vitro anti-B. pseudomallei efficacy of cethromycin, a novel ketolide with broad-spectrum activity against Gram-negative and Gram-positive pathogens. Methods: The 2-fold broth microdilution technique was used to assess the in vitro cethromycin susceptibility of a prototype strain, efflux mutants, and a panel of 60 clinical and environmental strains. Time-kill curves were used to assess the mode of action. Spontaneous resistant mutants were isolated and AmrAB-OprA efflux pump expression assessed by quantitative real-time PCR. Deletion and complementation analyses were performed to demonstrate AmrAB-OprA efflux pump mutant involvement in high-level cethromycin resistance. Results: In contrast to macrolides, cethromycin was a weak substrate of AmrAB-OprA and BpeAB-OprB. Cethromycin was bactericidal at high concentrations and bacteriostatic at MIC levels. The ketolide showed efficacy against clinical and environmental strains of B. pseudomallei, with MIC values ranging from 4 to 64 mg/L. Environmental isolates were consistently more susceptible than clinical isolates. High-level cethromycin resistance (MIC 128 mg/L) was due to constitutive AmrAB-OprA efflux pump overexpression, but other mechanisms also seem to contribute. Conclusions: In contrast to macrolides, which are readily effluxed, cethromycin is weakly extruded in wild-type strains and thus demonstrates significant in vitro anti-B. pseudomallei activity against diverse strains. Acquired high-level cethromycin resistance is caused by constitutive AmrAB-OprA efflux pump overexpression and other, probably non-efflux, mechanisms may also contribute to lower-level acquired resistance.",
keywords = "Efflux, Ketolides, Melioidosis, Therapy",
author = "Takehiko Mima and Schweizer, {Herbert P.} and Xu, {Ze Qi}",
year = "2011",
month = "1",
doi = "10.1093/jac/dkq391",
language = "English",
volume = "66",
pages = "73--78",
journal = "Journal of Antimicrobial Chemotherapy",
issn = "0305-7453",
publisher = "Oxford University Press",
number = "1",

}

TY - JOUR

T1 - In vitro activity of cethromycin against Burkholderia pseudomallei and investigation of mechanism of resistance

AU - Mima, Takehiko

AU - Schweizer, Herbert P.

AU - Xu, Ze Qi

PY - 2011/1

Y1 - 2011/1

N2 - Objectives: Most Burkholderia pseudomallei strains are intrinsically resistant to macrolides, mainly due to AmrAB-OprA- and/or BpeAB-OprB-mediated efflux. We assessed the in vitro anti-B. pseudomallei efficacy of cethromycin, a novel ketolide with broad-spectrum activity against Gram-negative and Gram-positive pathogens. Methods: The 2-fold broth microdilution technique was used to assess the in vitro cethromycin susceptibility of a prototype strain, efflux mutants, and a panel of 60 clinical and environmental strains. Time-kill curves were used to assess the mode of action. Spontaneous resistant mutants were isolated and AmrAB-OprA efflux pump expression assessed by quantitative real-time PCR. Deletion and complementation analyses were performed to demonstrate AmrAB-OprA efflux pump mutant involvement in high-level cethromycin resistance. Results: In contrast to macrolides, cethromycin was a weak substrate of AmrAB-OprA and BpeAB-OprB. Cethromycin was bactericidal at high concentrations and bacteriostatic at MIC levels. The ketolide showed efficacy against clinical and environmental strains of B. pseudomallei, with MIC values ranging from 4 to 64 mg/L. Environmental isolates were consistently more susceptible than clinical isolates. High-level cethromycin resistance (MIC 128 mg/L) was due to constitutive AmrAB-OprA efflux pump overexpression, but other mechanisms also seem to contribute. Conclusions: In contrast to macrolides, which are readily effluxed, cethromycin is weakly extruded in wild-type strains and thus demonstrates significant in vitro anti-B. pseudomallei activity against diverse strains. Acquired high-level cethromycin resistance is caused by constitutive AmrAB-OprA efflux pump overexpression and other, probably non-efflux, mechanisms may also contribute to lower-level acquired resistance.

AB - Objectives: Most Burkholderia pseudomallei strains are intrinsically resistant to macrolides, mainly due to AmrAB-OprA- and/or BpeAB-OprB-mediated efflux. We assessed the in vitro anti-B. pseudomallei efficacy of cethromycin, a novel ketolide with broad-spectrum activity against Gram-negative and Gram-positive pathogens. Methods: The 2-fold broth microdilution technique was used to assess the in vitro cethromycin susceptibility of a prototype strain, efflux mutants, and a panel of 60 clinical and environmental strains. Time-kill curves were used to assess the mode of action. Spontaneous resistant mutants were isolated and AmrAB-OprA efflux pump expression assessed by quantitative real-time PCR. Deletion and complementation analyses were performed to demonstrate AmrAB-OprA efflux pump mutant involvement in high-level cethromycin resistance. Results: In contrast to macrolides, cethromycin was a weak substrate of AmrAB-OprA and BpeAB-OprB. Cethromycin was bactericidal at high concentrations and bacteriostatic at MIC levels. The ketolide showed efficacy against clinical and environmental strains of B. pseudomallei, with MIC values ranging from 4 to 64 mg/L. Environmental isolates were consistently more susceptible than clinical isolates. High-level cethromycin resistance (MIC 128 mg/L) was due to constitutive AmrAB-OprA efflux pump overexpression, but other mechanisms also seem to contribute. Conclusions: In contrast to macrolides, which are readily effluxed, cethromycin is weakly extruded in wild-type strains and thus demonstrates significant in vitro anti-B. pseudomallei activity against diverse strains. Acquired high-level cethromycin resistance is caused by constitutive AmrAB-OprA efflux pump overexpression and other, probably non-efflux, mechanisms may also contribute to lower-level acquired resistance.

KW - Efflux

KW - Ketolides

KW - Melioidosis

KW - Therapy

UR - http://www.scopus.com/inward/record.url?scp=78650379504&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78650379504&partnerID=8YFLogxK

U2 - 10.1093/jac/dkq391

DO - 10.1093/jac/dkq391

M3 - Article

C2 - 20965890

AN - SCOPUS:78650379504

VL - 66

SP - 73

EP - 78

JO - Journal of Antimicrobial Chemotherapy

JF - Journal of Antimicrobial Chemotherapy

SN - 0305-7453

IS - 1

M1 - dkq391

ER -