Improvement of mechanical properties of Y-TZP by thermal annealing with monoclinic zirconia nanoparticle coating

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Objective: To assess whether a thermal annealing with a monoclinic zirconia (mZrO2) nanoparticle coating can improve the reliability of sandblasted yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) and maintain its mechanical strength. Methods: Commercially available Y-TZP (Lava Frame, 3M Dental Products) disks were sintered and surface-treated as follows: AS (as sintered, with no treatment); SB (sandblasting); SB-TA (sandblasting followed by thermal annealing at 1000 °C); and SB-mZr-TA (sandblasting followed by thermal annealing at 1000 °C with the mZrO2 nanoparticle coating). The mZrO2 nanoparticles of 21 nm in size were prepared by a hydrothermal method, and coated onto Y-TZP sintered disks as a 5 g/L ethanol dispersion. Biaxial flexural strength (S) was measured using the piston-on-three-ball test, and reliability was evaluated by the Weibull modulus (m). Results: Biaxial flexural tests showed a significant increase in the strength of Group SB (SSB = 1445 ± 191 MPa) compared with Group AS (SAS = 1071 ± 112 MPa). The thermal annealing improved the reliabilities of the sandblasted Y-TZP (mSB-TA = 20.14 and mSB- m Zr-TA = 21.33), as compared with Group SB (mSB = 7.77). However, the conventional thermal annealing without the mZrO2 coating caused a significant decrease in the strength of sandblasted Y-TZP (SSB-TA = 1273 ± 65 MPa). Importantly, the mZrO2 coating prevented the decrease in the strength caused by conventional thermal annealing (SSB- m Zr-TA = 1379 ± 65 MPa). Significance: The thermal annealing with the mZrO2 nanoparticle coating can improve the reliability of sandblasted Y-TZP and maintain its mechanical strength, which would otherwise be decreased by the conventional annealing process.

Original languageEnglish
Pages (from-to)970-978
Number of pages9
JournalDental Materials
Volume35
Issue number7
DOIs
Publication statusPublished - Jul 2019

Keywords

  • Biaxial flexural strength
  • Monoclinic phase
  • Thermal annealing
  • Yttria-stabilized tetragonal zirconia polycrystals

ASJC Scopus subject areas

  • Materials Science(all)
  • Dentistry(all)
  • Mechanics of Materials

Fingerprint Dive into the research topics of 'Improvement of mechanical properties of Y-TZP by thermal annealing with monoclinic zirconia nanoparticle coating'. Together they form a unique fingerprint.

  • Cite this