Abstract
Intermediate resonators (repeaters) of resonant inductive coupling wireless power transfer systems can improve the transmission distance as well as the output power. However, frequency bandwidths in which the repeater can operate effectively are very narrow because the repeater usually has a high quality-factor. Furthermore, these frequency bandwidths shift for the following two factors. The first factor is the intensity of the magnetic coupling between the repeater and the other resonator. The second factor is the variation in the natural resonance frequency of the resonators due to a production error, temperature characteristic, and aging degradation. Therefore, the repeater is not practical because the repeater requires accurate adjusting of the circuit parameters every time according to the various conditions. To address this problem, we propose an impedance matching method for the repeater. The proposed method can maximize the induced current in the repeater in wide frequency bandwidth regardless of the variations in the intensity of the magnetic coupling and the natural resonance frequency. Therefore, the proposed method can realize the repeater which can stably improve the performance of the wireless power transfer. Experiment and simulation successfully verified the effectiveness of the proposed method as well as the appropriateness of the theoretical analysis.
Original language | English |
---|---|
Title of host publication | 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 6194-6201 |
Number of pages | 8 |
ISBN (Electronic) | 9781479973118 |
DOIs | |
Publication status | Published - Dec 3 2018 |
Event | 10th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2018 - Portland, United States Duration: Sep 23 2018 → Sep 27 2018 |
Other
Other | 10th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2018 |
---|---|
Country | United States |
City | Portland |
Period | 9/23/18 → 9/27/18 |
Keywords
- Frequency splitting phenomenon
- Impedance matching
- Repeater
- Resonant inductive coupling
- Wireless power transfer
ASJC Scopus subject areas
- Energy Engineering and Power Technology
- Renewable Energy, Sustainability and the Environment
- Control and Optimization
- Computer Networks and Communications
- Hardware and Architecture
- Information Systems and Management