High hydrostatic pressure induces slow contraction in mouse cardiomyocytes

Yohei Yamaguchi, Masayoshi Nishiyama, Hiroaki Kai, Toshiyuki Kaneko, Keiko Kaihara, Gentaro Iribe, Akira Takai, Keiji Naruse, Masatoshi Morimatsu

Research output: Contribution to journalArticlepeer-review

Abstract

Cardiomyocytes are contractile cells that regulate heart contraction. Ca2+ flux via Ca2+ channels activates actomyosin interactions, leading to cardiomyocyte contraction, which is modulated by physical factors (e.g., stretch, shear stress, and hydrostatic pressure). We evaluated the mechanism triggering slow contractions using a high-pressure microscope to characterize changes in cell morphology and intracellular Ca2+ concentration ([Ca2+]i) in mouse cardiomyocytes exposed to high hydrostatic pressures. We found that cardiomyocytes contracted slowly without an acute transient increase in [Ca2+]i, while a myosin ATPase inhibitor interrupted pressure-induced slow contractions. Furthermore, transmission electron microscopy showed that, although the sarcomere length was shortened upon the application of 20 MPa, this pressure did not collapse cellular structures such as the sarcolemma and sarcomeres. Our results suggest that pressure-induced slow contractions in cardiomyocytes are driven by the activation of actomyosin interactions without an acute transient increase in [Ca2+]i.

Original languageEnglish
JournalBiophysical Journal
DOIs
Publication statusAccepted/In press - 2022

ASJC Scopus subject areas

  • Biophysics

Fingerprint

Dive into the research topics of 'High hydrostatic pressure induces slow contraction in mouse cardiomyocytes'. Together they form a unique fingerprint.

Cite this