Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in arabidopsis thaliana

Mohammad Shakhawat Hossain, Wenxiu Ye, Mohammad Anowar Hossain, Eiji Okuma, Misugi Uraji, Yoshimasa Nakamura, Izumi C. Mori, Yoshiyuki Murata

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Isothiocyanates, nitriles, and thiocyanates are degradation products of glucosinolates in crucifer plants. In this study, we investigated the stomatal response to allyl isothiocyanate (AITC), 3-butenenitrile (3BN), and ethyl thiocyanate (ESCN) in Arabidopsis. AITC, 3BN, and ESCN induced stomatal closure in the wild type and the atrbohD atrbohF mutant. Stomatal closure was inhibited by catalase and salicylhydroxamic acid (SHAM). The degradation products induced extracellular reactive oxygen species (ROS) production in the rosette leaves, and intracellular ROS accumulation, NO production, and cytosolic free calcium concentration ([Ca2+]cyt) oscillations in guard cells, which were inhibited by SHAM. These results suggest that glucosinolate degradation products induce stomatal closure accompanied by extracellular ROS production mediated by SHAMsensitive peroxidases, intracellular ROS accumulation, and [Ca 2+]cyt oscillation in Arabidopsis.

Original languageEnglish
Pages (from-to)977-983
Number of pages7
JournalBioscience, Biotechnology and Biochemistry
Volume77
Issue number5
DOIs
Publication statusPublished - Jun 12 2013

    Fingerprint

Keywords

  • 3-butenenitrile
  • Allyl isothiocyanate
  • Ethyl thiocyanate
  • Glucosinolates
  • Reactive oxygen species

ASJC Scopus subject areas

  • Biotechnology
  • Analytical Chemistry
  • Biochemistry
  • Applied Microbiology and Biotechnology
  • Molecular Biology
  • Organic Chemistry

Cite this