TY - JOUR
T1 - Geometric and electronic structures of the synthetic Mn4CaO4 model compound mimicking the photosynthetic oxygen-evolving complex
AU - Shoji, Mitsuo
AU - Isobe, Hiroshi
AU - Shen, Jian Ren
AU - Yamaguchi, Kizashi
N1 - Funding Information:
This research was supported by a Grant-in-Aid for Specially Promoted Research (No. 24000018) from MEXT, Japan.
Publisher Copyright:
© 2016 the Owner Societies.
PY - 2016
Y1 - 2016
N2 - Water oxidation by photosystem II (PSII) converts light energy into chemical energy with the concomitant production of molecular oxygen, both of which are indispensable for sustaining life on Earth. This reaction is catalyzed by an oxygen-evolving complex (OEC) embedded in the huge PSII complex, and its mechanism remains elusive in spite of the extensive studies of the geometric and electronic structures. In order to elucidate the water-splitting mechanism, synthetic approaches have been extensively employed to mimic the native OEC. Very recently, a synthetic complex [Mn4CaO4(ButCOO)8(py)(ButCOOH)2] (1) closely mimicking the structure of the native OEC was obtained. In this study, we extensively examined the geometric, electronic and spin structures of 1 using the density functional theory method. Our results showed that the geometric structure of 1 can be accurately reproduced by theoretical calculations, and revealed many similarities in the ground valence and spin states between 1 and the native OEC. We also revealed two different valence states in the one-electron oxidized state of 1 (corresponding to the S2 state), which lie in the lower and higher ground spin states (S = 1/2 and S = 5/2), respectively. One remarkable difference between 1 and the native OEC is the presence of a non-negligible antiferromagnetic interaction between the Mn1 and Mn4 sites, which slightly influenced their ground spin structures (spin alignments). The major reason causing the difference can be attributed to the short Mn1-O5 and Mn1-Mn4 distances in 1. The introduction of the missing O4 atom and the reorientation of the Ca coordinating ligands improved the Mn1-O5 and Mn1-Mn4 distances comparable to the native OEC. These modifications will therefore be important for the synthesis of further advanced model complexes more closely mimicking the native OEC beyond 1.
AB - Water oxidation by photosystem II (PSII) converts light energy into chemical energy with the concomitant production of molecular oxygen, both of which are indispensable for sustaining life on Earth. This reaction is catalyzed by an oxygen-evolving complex (OEC) embedded in the huge PSII complex, and its mechanism remains elusive in spite of the extensive studies of the geometric and electronic structures. In order to elucidate the water-splitting mechanism, synthetic approaches have been extensively employed to mimic the native OEC. Very recently, a synthetic complex [Mn4CaO4(ButCOO)8(py)(ButCOOH)2] (1) closely mimicking the structure of the native OEC was obtained. In this study, we extensively examined the geometric, electronic and spin structures of 1 using the density functional theory method. Our results showed that the geometric structure of 1 can be accurately reproduced by theoretical calculations, and revealed many similarities in the ground valence and spin states between 1 and the native OEC. We also revealed two different valence states in the one-electron oxidized state of 1 (corresponding to the S2 state), which lie in the lower and higher ground spin states (S = 1/2 and S = 5/2), respectively. One remarkable difference between 1 and the native OEC is the presence of a non-negligible antiferromagnetic interaction between the Mn1 and Mn4 sites, which slightly influenced their ground spin structures (spin alignments). The major reason causing the difference can be attributed to the short Mn1-O5 and Mn1-Mn4 distances in 1. The introduction of the missing O4 atom and the reorientation of the Ca coordinating ligands improved the Mn1-O5 and Mn1-Mn4 distances comparable to the native OEC. These modifications will therefore be important for the synthesis of further advanced model complexes more closely mimicking the native OEC beyond 1.
UR - http://www.scopus.com/inward/record.url?scp=84966292007&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84966292007&partnerID=8YFLogxK
U2 - 10.1039/c5cp07226c
DO - 10.1039/c5cp07226c
M3 - Article
C2 - 27055567
AN - SCOPUS:84966292007
SN - 1463-9076
VL - 18
SP - 11330
EP - 11340
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 16
ER -