Genomic regions responsible for amenability to Agrobacterium-mediated transformation in barley

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Different plant cultivars of the same genus and species can exhibit vastly different genetic transformation efficiencies. However, the genetic factors underlying these differences in transformation rate remain largely unknown. In barley, 'Golden Promise' is one of a few cultivars reliable for Agrobacterium-mediated transformation. By contrast, cultivar 'Haruna Nijo' is recalcitrant to genetic transformation. We identified genomic regions of barley important for successful transformation with Agrobacterium, utilizing the 'Haruna Nijo' × 'Golden Promise' F2 generation and genotyping by 124 genome-wide SNP markers. We observed significant segregation distortions of these markers from the expected 1:2:1 ratio toward the 'Golden Promise'-type in regions of chromosomes 2H and 3H, indicating that the alleles of 'Golden Promise' in these regions might contribute to transformation efficiency. The same regions, which we termed Transformation Amenability (TFA) regions, were also conserved in transgenic F2 plants generated from a 'Morex' × 'Golden Promise' cross. The genomic regions identified herein likely include necessary factors for Agrobacterium-mediated transformation in barley. The potential to introduce these loci into any haplotype of barley opens the door to increasing the efficiency of transformation for target alleles into any haplotype of barley by the TFA-based methods proposed in this report.

Original languageEnglish
Article number37505
JournalScientific Reports
Volume6
DOIs
Publication statusPublished - Nov 22 2016

Fingerprint

Agrobacterium
Hordeum
Genetic Transformation
Haplotypes
Alleles
Genetically Modified Plants
Single Nucleotide Polymorphism
Chromosomes
Genome

ASJC Scopus subject areas

  • General

Cite this

@article{5c861368e6da48d4aabd3835626d6d32,
title = "Genomic regions responsible for amenability to Agrobacterium-mediated transformation in barley",
abstract = "Different plant cultivars of the same genus and species can exhibit vastly different genetic transformation efficiencies. However, the genetic factors underlying these differences in transformation rate remain largely unknown. In barley, 'Golden Promise' is one of a few cultivars reliable for Agrobacterium-mediated transformation. By contrast, cultivar 'Haruna Nijo' is recalcitrant to genetic transformation. We identified genomic regions of barley important for successful transformation with Agrobacterium, utilizing the 'Haruna Nijo' × 'Golden Promise' F2 generation and genotyping by 124 genome-wide SNP markers. We observed significant segregation distortions of these markers from the expected 1:2:1 ratio toward the 'Golden Promise'-type in regions of chromosomes 2H and 3H, indicating that the alleles of 'Golden Promise' in these regions might contribute to transformation efficiency. The same regions, which we termed Transformation Amenability (TFA) regions, were also conserved in transgenic F2 plants generated from a 'Morex' × 'Golden Promise' cross. The genomic regions identified herein likely include necessary factors for Agrobacterium-mediated transformation in barley. The potential to introduce these loci into any haplotype of barley opens the door to increasing the efficiency of transformation for target alleles into any haplotype of barley by the TFA-based methods proposed in this report.",
author = "Hiroshi Hisano and Kazuhiro Sato",
year = "2016",
month = "11",
day = "22",
doi = "10.1038/srep37505",
language = "English",
volume = "6",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",

}

TY - JOUR

T1 - Genomic regions responsible for amenability to Agrobacterium-mediated transformation in barley

AU - Hisano, Hiroshi

AU - Sato, Kazuhiro

PY - 2016/11/22

Y1 - 2016/11/22

N2 - Different plant cultivars of the same genus and species can exhibit vastly different genetic transformation efficiencies. However, the genetic factors underlying these differences in transformation rate remain largely unknown. In barley, 'Golden Promise' is one of a few cultivars reliable for Agrobacterium-mediated transformation. By contrast, cultivar 'Haruna Nijo' is recalcitrant to genetic transformation. We identified genomic regions of barley important for successful transformation with Agrobacterium, utilizing the 'Haruna Nijo' × 'Golden Promise' F2 generation and genotyping by 124 genome-wide SNP markers. We observed significant segregation distortions of these markers from the expected 1:2:1 ratio toward the 'Golden Promise'-type in regions of chromosomes 2H and 3H, indicating that the alleles of 'Golden Promise' in these regions might contribute to transformation efficiency. The same regions, which we termed Transformation Amenability (TFA) regions, were also conserved in transgenic F2 plants generated from a 'Morex' × 'Golden Promise' cross. The genomic regions identified herein likely include necessary factors for Agrobacterium-mediated transformation in barley. The potential to introduce these loci into any haplotype of barley opens the door to increasing the efficiency of transformation for target alleles into any haplotype of barley by the TFA-based methods proposed in this report.

AB - Different plant cultivars of the same genus and species can exhibit vastly different genetic transformation efficiencies. However, the genetic factors underlying these differences in transformation rate remain largely unknown. In barley, 'Golden Promise' is one of a few cultivars reliable for Agrobacterium-mediated transformation. By contrast, cultivar 'Haruna Nijo' is recalcitrant to genetic transformation. We identified genomic regions of barley important for successful transformation with Agrobacterium, utilizing the 'Haruna Nijo' × 'Golden Promise' F2 generation and genotyping by 124 genome-wide SNP markers. We observed significant segregation distortions of these markers from the expected 1:2:1 ratio toward the 'Golden Promise'-type in regions of chromosomes 2H and 3H, indicating that the alleles of 'Golden Promise' in these regions might contribute to transformation efficiency. The same regions, which we termed Transformation Amenability (TFA) regions, were also conserved in transgenic F2 plants generated from a 'Morex' × 'Golden Promise' cross. The genomic regions identified herein likely include necessary factors for Agrobacterium-mediated transformation in barley. The potential to introduce these loci into any haplotype of barley opens the door to increasing the efficiency of transformation for target alleles into any haplotype of barley by the TFA-based methods proposed in this report.

UR - http://www.scopus.com/inward/record.url?scp=84996525920&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84996525920&partnerID=8YFLogxK

U2 - 10.1038/srep37505

DO - 10.1038/srep37505

M3 - Article

C2 - 27874056

AN - SCOPUS:84996525920

VL - 6

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

M1 - 37505

ER -