Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-aqua Transport Selectivity Profiles with Comparative Perspective.

Abul Kalam Azad, Jahed Ahmed, Md. Asraful Alum, Md. Mahbub Hasan, Takahiro Ishikawa, Yoshihiro Sawa, Maki Katsuhara

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract


Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and
Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the nonaqua
transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of
MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles and insight into comparative transport selectivity of plant MIPs, and provides tools for the development of transgenic plants.
Original languageEnglish
Article numbere0157735
JournalPLoS One
Volume11
Issue number6
Publication statusPublished - 2016

Fingerprint

grasses
genome
proteins
plant-incorporated protectants
arginine
aromatic compounds
Selaginella
Setaria italica
Physcomitrella patens
aquaporins
Panicum virgatum
plant proteins
Liliopsida
transcriptomics
Sorghum bicolor
transgenic plants
heavy metals
cotton
Arabidopsis thaliana
soybeans

Cite this

Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-aqua Transport Selectivity Profiles with Comparative Perspective. / Azad, Abul Kalam ; Ahmed, Jahed; Alum, Md. Asraful; Hasan, Md. Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro; Katsuhara, Maki.

In: PLoS One, Vol. 11, No. 6, e0157735, 2016.

Research output: Contribution to journalArticle

Azad, Abul Kalam ; Ahmed, Jahed ; Alum, Md. Asraful ; Hasan, Md. Mahbub ; Ishikawa, Takahiro ; Sawa, Yoshihiro ; Katsuhara, Maki. / Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-aqua Transport Selectivity Profiles with Comparative Perspective. In: PLoS One. 2016 ; Vol. 11, No. 6.
@article{d1f6eee5adbd4b60a7d5a00d91688669,
title = "Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-aqua Transport Selectivity Profiles with Comparative Perspective.",
abstract = "Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor andBrachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the nonaquatransport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression ofMIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles and insight into comparative transport selectivity of plant MIPs, and provides tools for the development of transgenic plants.",
author = "Azad, {Abul Kalam} and Jahed Ahmed and Alum, {Md. Asraful} and Hasan, {Md. Mahbub} and Takahiro Ishikawa and Yoshihiro Sawa and Maki Katsuhara",
year = "2016",
language = "English",
volume = "11",
journal = "PLoS One",
number = "6",

}

TY - JOUR

T1 - Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-aqua Transport Selectivity Profiles with Comparative Perspective.

AU - Azad, Abul Kalam

AU - Ahmed, Jahed

AU - Alum, Md. Asraful

AU - Hasan, Md. Mahbub

AU - Ishikawa, Takahiro

AU - Sawa, Yoshihiro

AU - Katsuhara, Maki

PY - 2016

Y1 - 2016

N2 - Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor andBrachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the nonaquatransport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression ofMIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles and insight into comparative transport selectivity of plant MIPs, and provides tools for the development of transgenic plants.

AB - Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor andBrachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the nonaquatransport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression ofMIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles and insight into comparative transport selectivity of plant MIPs, and provides tools for the development of transgenic plants.

M3 - Article

VL - 11

JO - PLoS One

JF - PLoS One

IS - 6

M1 - e0157735

ER -