Genome of human hepatitis C virus (HCV): Gene organization, sequence diversity, and variation

Research output: Contribution to journalArticle

83 Citations (Scopus)

Abstract

Hepatitis C virus (HCV) is the major etiologic agent of non-A, non-B hepatitis. HCV infection frequently causes chronic hepatitis, which progresses to liver cirrhosis and hepatocellular carcinoma. Since the discovery of HCV in 1989, a large number of genetic analyses of HCV have been reported, and the viral genome structure has been elucidated. An enveloped virus, HCV belongs to the family Flaviviridae, whose genome consists of a positive-stranded RNA molecule of about 9.6 kilobases and encodes a large polyprotein precursor (about 3000 amino acids). This precursor protein is cleaved by the host and viral proteinase to generate at least 10 proteins: the core, envelope 1 (E1), E2, p7, nonstructural (NS) 2, NS3, NS4A, NS4B, NS5A, and NS5B. These HCV proteins not only function in viral replication but also affect a variety of cellular functions. HCV has been found to have remarkable genetic heterogeneity. To date, more than 30 HCV genotypes have been identified worldwide. Furthermore, HCV may show quasispecies distribution in an infected individual. These findings may have important implications in diagnosis, pathogenesis, treatment, and vaccine development. The hypervariable region 1 found within the envelope E2 protein was shown to be a major site for the genetic evolution of HCV after the onset of hepatitis, and might be involved in escape from the host immunesurveillance system.

Original languageEnglish
Pages (from-to)129-151
Number of pages23
JournalMicrobial and Comparative Genomics
Volume5
Issue number3
Publication statusPublished - 2000

Fingerprint

Human Genome
Viruses
Hepacivirus
Genes
Hepatitis
Flaviviridae
Polyproteins
Viral Structures
Proteins
Protein Precursors
Genetic Heterogeneity
Molecular Evolution
Viral Genome
Virus Diseases
Chronic Hepatitis
Liver Cirrhosis
Liver
Hepatocellular Carcinoma
Peptide Hydrolases
Vaccines

ASJC Scopus subject areas

  • Molecular Biology
  • Applied Microbiology and Biotechnology

Cite this

@article{2c099fcb5338494fb78c0272cc93e741,
title = "Genome of human hepatitis C virus (HCV): Gene organization, sequence diversity, and variation",
abstract = "Hepatitis C virus (HCV) is the major etiologic agent of non-A, non-B hepatitis. HCV infection frequently causes chronic hepatitis, which progresses to liver cirrhosis and hepatocellular carcinoma. Since the discovery of HCV in 1989, a large number of genetic analyses of HCV have been reported, and the viral genome structure has been elucidated. An enveloped virus, HCV belongs to the family Flaviviridae, whose genome consists of a positive-stranded RNA molecule of about 9.6 kilobases and encodes a large polyprotein precursor (about 3000 amino acids). This precursor protein is cleaved by the host and viral proteinase to generate at least 10 proteins: the core, envelope 1 (E1), E2, p7, nonstructural (NS) 2, NS3, NS4A, NS4B, NS5A, and NS5B. These HCV proteins not only function in viral replication but also affect a variety of cellular functions. HCV has been found to have remarkable genetic heterogeneity. To date, more than 30 HCV genotypes have been identified worldwide. Furthermore, HCV may show quasispecies distribution in an infected individual. These findings may have important implications in diagnosis, pathogenesis, treatment, and vaccine development. The hypervariable region 1 found within the envelope E2 protein was shown to be a major site for the genetic evolution of HCV after the onset of hepatitis, and might be involved in escape from the host immunesurveillance system.",
author = "Nobuyuki Kato",
year = "2000",
language = "English",
volume = "5",
pages = "129--151",
journal = "OMICS A Journal of Integrative Biology",
issn = "1536-2310",
publisher = "Mary Ann Liebert Inc.",
number = "3",

}

TY - JOUR

T1 - Genome of human hepatitis C virus (HCV)

T2 - Gene organization, sequence diversity, and variation

AU - Kato, Nobuyuki

PY - 2000

Y1 - 2000

N2 - Hepatitis C virus (HCV) is the major etiologic agent of non-A, non-B hepatitis. HCV infection frequently causes chronic hepatitis, which progresses to liver cirrhosis and hepatocellular carcinoma. Since the discovery of HCV in 1989, a large number of genetic analyses of HCV have been reported, and the viral genome structure has been elucidated. An enveloped virus, HCV belongs to the family Flaviviridae, whose genome consists of a positive-stranded RNA molecule of about 9.6 kilobases and encodes a large polyprotein precursor (about 3000 amino acids). This precursor protein is cleaved by the host and viral proteinase to generate at least 10 proteins: the core, envelope 1 (E1), E2, p7, nonstructural (NS) 2, NS3, NS4A, NS4B, NS5A, and NS5B. These HCV proteins not only function in viral replication but also affect a variety of cellular functions. HCV has been found to have remarkable genetic heterogeneity. To date, more than 30 HCV genotypes have been identified worldwide. Furthermore, HCV may show quasispecies distribution in an infected individual. These findings may have important implications in diagnosis, pathogenesis, treatment, and vaccine development. The hypervariable region 1 found within the envelope E2 protein was shown to be a major site for the genetic evolution of HCV after the onset of hepatitis, and might be involved in escape from the host immunesurveillance system.

AB - Hepatitis C virus (HCV) is the major etiologic agent of non-A, non-B hepatitis. HCV infection frequently causes chronic hepatitis, which progresses to liver cirrhosis and hepatocellular carcinoma. Since the discovery of HCV in 1989, a large number of genetic analyses of HCV have been reported, and the viral genome structure has been elucidated. An enveloped virus, HCV belongs to the family Flaviviridae, whose genome consists of a positive-stranded RNA molecule of about 9.6 kilobases and encodes a large polyprotein precursor (about 3000 amino acids). This precursor protein is cleaved by the host and viral proteinase to generate at least 10 proteins: the core, envelope 1 (E1), E2, p7, nonstructural (NS) 2, NS3, NS4A, NS4B, NS5A, and NS5B. These HCV proteins not only function in viral replication but also affect a variety of cellular functions. HCV has been found to have remarkable genetic heterogeneity. To date, more than 30 HCV genotypes have been identified worldwide. Furthermore, HCV may show quasispecies distribution in an infected individual. These findings may have important implications in diagnosis, pathogenesis, treatment, and vaccine development. The hypervariable region 1 found within the envelope E2 protein was shown to be a major site for the genetic evolution of HCV after the onset of hepatitis, and might be involved in escape from the host immunesurveillance system.

UR - http://www.scopus.com/inward/record.url?scp=0034484070&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034484070&partnerID=8YFLogxK

M3 - Article

C2 - 11252351

AN - SCOPUS:0034484070

VL - 5

SP - 129

EP - 151

JO - OMICS A Journal of Integrative Biology

JF - OMICS A Journal of Integrative Biology

SN - 1536-2310

IS - 3

ER -