Generating prime degree irreducible polynomials by using irreducible all-one polynomial over F2

Kei Makita, Yasuyuki Nogami, Tatsuo Sugimura

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

In most of the methods of public key cryptography devised in recent years, a finite field of a large order is used as the field of definition. In contrast, there are many studies in which a higher-degree extension field of characteristic 2 is fast implemented for easier hardware realization. There are also many reports of the generation of the required higher-degree irreducible polynomial, and of the construction of a basis suited to fast implementation, such as an optimal normal basis (ONB). For generating higher-degree irreducible polynomials, there is a method in which a 2m-th degree self-reciprocal irreducible polynomial is generated from an m-th degree irreducible polynomial by a simple polynomial transformation (called the self-reciprocal transformation). This paper considers this transformation and shows that when the set of zeros of the m-th degree irreducible polynomial forms a normal basis, the set of zeros of the generated 2m-th order self-reciprocal irreducible polynomial also forms a normal base. Then it is clearly shown that there is a one-to-one correspondence between the transformed irreducible polynomial and the generated self-reciprocal irreducible polynomial. Consequently, the inverse transformation of the self-reciprocal transformation (self-reciprocal inverse transformation) can be applied to a self-reciprocal irreducible polynomial. It is shown that an m-th degree irreducible polynomial can always be generated from a 2m-th degree self-reciprocal irreducible polynomial by the self-reciprocal inverse transformation. We can use this fact for generating 1/2-degree irreducible polynomials. As an application of 1/2-degree irreducible polynomial generation, this paper proposes a method which generates a prime degree irreducible polynomial with a Type II ONB as its zeros.

Original languageEnglish
Pages (from-to)23-32
Number of pages10
JournalElectronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi)
Volume88
Issue number7
DOIs
Publication statusPublished - Jul 2005

Fingerprint

Polynomials
Public key cryptography
Hardware

Keywords

  • Elliptic curve cryptography
  • Self-reciprocal irreducible polynomial
  • Type I/Type II optimal normal basis

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Cite this

@article{f2bde25efa114b75bc887918ddcfce57,
title = "Generating prime degree irreducible polynomials by using irreducible all-one polynomial over F2",
abstract = "In most of the methods of public key cryptography devised in recent years, a finite field of a large order is used as the field of definition. In contrast, there are many studies in which a higher-degree extension field of characteristic 2 is fast implemented for easier hardware realization. There are also many reports of the generation of the required higher-degree irreducible polynomial, and of the construction of a basis suited to fast implementation, such as an optimal normal basis (ONB). For generating higher-degree irreducible polynomials, there is a method in which a 2m-th degree self-reciprocal irreducible polynomial is generated from an m-th degree irreducible polynomial by a simple polynomial transformation (called the self-reciprocal transformation). This paper considers this transformation and shows that when the set of zeros of the m-th degree irreducible polynomial forms a normal basis, the set of zeros of the generated 2m-th order self-reciprocal irreducible polynomial also forms a normal base. Then it is clearly shown that there is a one-to-one correspondence between the transformed irreducible polynomial and the generated self-reciprocal irreducible polynomial. Consequently, the inverse transformation of the self-reciprocal transformation (self-reciprocal inverse transformation) can be applied to a self-reciprocal irreducible polynomial. It is shown that an m-th degree irreducible polynomial can always be generated from a 2m-th degree self-reciprocal irreducible polynomial by the self-reciprocal inverse transformation. We can use this fact for generating 1/2-degree irreducible polynomials. As an application of 1/2-degree irreducible polynomial generation, this paper proposes a method which generates a prime degree irreducible polynomial with a Type II ONB as its zeros.",
keywords = "Elliptic curve cryptography, Self-reciprocal irreducible polynomial, Type I/Type II optimal normal basis",
author = "Kei Makita and Yasuyuki Nogami and Tatsuo Sugimura",
year = "2005",
month = "7",
doi = "10.1002/ecjc.20151",
language = "English",
volume = "88",
pages = "23--32",
journal = "Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi)",
issn = "1042-0967",
publisher = "John Wiley and Sons Inc.",
number = "7",

}

TY - JOUR

T1 - Generating prime degree irreducible polynomials by using irreducible all-one polynomial over F2

AU - Makita, Kei

AU - Nogami, Yasuyuki

AU - Sugimura, Tatsuo

PY - 2005/7

Y1 - 2005/7

N2 - In most of the methods of public key cryptography devised in recent years, a finite field of a large order is used as the field of definition. In contrast, there are many studies in which a higher-degree extension field of characteristic 2 is fast implemented for easier hardware realization. There are also many reports of the generation of the required higher-degree irreducible polynomial, and of the construction of a basis suited to fast implementation, such as an optimal normal basis (ONB). For generating higher-degree irreducible polynomials, there is a method in which a 2m-th degree self-reciprocal irreducible polynomial is generated from an m-th degree irreducible polynomial by a simple polynomial transformation (called the self-reciprocal transformation). This paper considers this transformation and shows that when the set of zeros of the m-th degree irreducible polynomial forms a normal basis, the set of zeros of the generated 2m-th order self-reciprocal irreducible polynomial also forms a normal base. Then it is clearly shown that there is a one-to-one correspondence between the transformed irreducible polynomial and the generated self-reciprocal irreducible polynomial. Consequently, the inverse transformation of the self-reciprocal transformation (self-reciprocal inverse transformation) can be applied to a self-reciprocal irreducible polynomial. It is shown that an m-th degree irreducible polynomial can always be generated from a 2m-th degree self-reciprocal irreducible polynomial by the self-reciprocal inverse transformation. We can use this fact for generating 1/2-degree irreducible polynomials. As an application of 1/2-degree irreducible polynomial generation, this paper proposes a method which generates a prime degree irreducible polynomial with a Type II ONB as its zeros.

AB - In most of the methods of public key cryptography devised in recent years, a finite field of a large order is used as the field of definition. In contrast, there are many studies in which a higher-degree extension field of characteristic 2 is fast implemented for easier hardware realization. There are also many reports of the generation of the required higher-degree irreducible polynomial, and of the construction of a basis suited to fast implementation, such as an optimal normal basis (ONB). For generating higher-degree irreducible polynomials, there is a method in which a 2m-th degree self-reciprocal irreducible polynomial is generated from an m-th degree irreducible polynomial by a simple polynomial transformation (called the self-reciprocal transformation). This paper considers this transformation and shows that when the set of zeros of the m-th degree irreducible polynomial forms a normal basis, the set of zeros of the generated 2m-th order self-reciprocal irreducible polynomial also forms a normal base. Then it is clearly shown that there is a one-to-one correspondence between the transformed irreducible polynomial and the generated self-reciprocal irreducible polynomial. Consequently, the inverse transformation of the self-reciprocal transformation (self-reciprocal inverse transformation) can be applied to a self-reciprocal irreducible polynomial. It is shown that an m-th degree irreducible polynomial can always be generated from a 2m-th degree self-reciprocal irreducible polynomial by the self-reciprocal inverse transformation. We can use this fact for generating 1/2-degree irreducible polynomials. As an application of 1/2-degree irreducible polynomial generation, this paper proposes a method which generates a prime degree irreducible polynomial with a Type II ONB as its zeros.

KW - Elliptic curve cryptography

KW - Self-reciprocal irreducible polynomial

KW - Type I/Type II optimal normal basis

UR - http://www.scopus.com/inward/record.url?scp=17144362464&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=17144362464&partnerID=8YFLogxK

U2 - 10.1002/ecjc.20151

DO - 10.1002/ecjc.20151

M3 - Article

AN - SCOPUS:17144362464

VL - 88

SP - 23

EP - 32

JO - Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi)

JF - Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi)

SN - 1042-0967

IS - 7

ER -