TY - JOUR
T1 - Functional interaction of bone morphogenetic protein and growth hormone releasing peptide in adrenocorticotropin regulation by corticotrope cells
AU - Tsukamoto, Naoko
AU - Otsuka, Fumio
AU - Miyoshi, Tomoko
AU - Inagaki, Kenichi
AU - Nakamura, Eri
AU - Terasaka, Tomohiro
AU - Takeda, Masaya
AU - Ogura, Toshio
AU - Iwasaki, Yasumasa
AU - Makino, Hirofumi
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2011/9/15
Y1 - 2011/9/15
N2 - Mechanisms by which GHRP stimulates ACTH release in corticotrope cells were investigated using mouse corticotrope AtT20 cells by focusing on the biological activity of BMP-4. GHRP-2 increased ACTH and cAMP secretion by AtT20 cells; however, its effects were less potent than the effects of CRH. BMP-4 suppressed basal ACTH production and POMC transcription, and the inhibition of endogenous BMP receptor signaling led to an increase in ACTH production. Of note, BMP-4 suppressed ACTH production and POMC-promoter activity induced by CRH more efficaciously than that induced by GHRP-2. BMP-4 had no significant effect on cAMP synthesis induced by CRH or GHRP-2. Stimulation with CRH, but not GHRP-2, activated ERK1/2, p38, SAPK/JNK and Akt phosphorylation, in which CRH-induced phosphorylation of ERK and p38 was suppressed by BMP-4. GHRP-2-induced ACTH secretion was not affected by inhibitors of ERK, p38 and Akt pathways, which effectively suppressed CRH-induced ACTH release. Blockage of the cAMP-PKA pathway reversed CRH- as well as GHRP-2-induced ACTH secretion. Furthermore, the inhibition of ERK and p38 significantly reduced cAMP synthesis induced by CRH but not by GHRP-2. Thus, CRH activates ACTH production through ERK and p38 pathways in addition to the cAMP-PKA pathway, which is also activated downstream of MAPK. On the other hand, GHRP-2-induced ACTH production was predominantly linked to the cAMP-PKA pathway. Moreover, CRH and GHRP-2 upregulated BMP receptor signaling, while BMP-4, CRH and GHRP-2 had no significant effect on the expression level of GHSR. In addition, GHRP-2 suppressed the expression of Smad7, which is an inhibitor of the BMP-Smad1/5/8 pathway. Collectively, the results revealed a functional interaction between GHRP-2 and BMP signaling, in which endogenous BMP may act as an autoregulatory system in controlling ACTH production.
AB - Mechanisms by which GHRP stimulates ACTH release in corticotrope cells were investigated using mouse corticotrope AtT20 cells by focusing on the biological activity of BMP-4. GHRP-2 increased ACTH and cAMP secretion by AtT20 cells; however, its effects were less potent than the effects of CRH. BMP-4 suppressed basal ACTH production and POMC transcription, and the inhibition of endogenous BMP receptor signaling led to an increase in ACTH production. Of note, BMP-4 suppressed ACTH production and POMC-promoter activity induced by CRH more efficaciously than that induced by GHRP-2. BMP-4 had no significant effect on cAMP synthesis induced by CRH or GHRP-2. Stimulation with CRH, but not GHRP-2, activated ERK1/2, p38, SAPK/JNK and Akt phosphorylation, in which CRH-induced phosphorylation of ERK and p38 was suppressed by BMP-4. GHRP-2-induced ACTH secretion was not affected by inhibitors of ERK, p38 and Akt pathways, which effectively suppressed CRH-induced ACTH release. Blockage of the cAMP-PKA pathway reversed CRH- as well as GHRP-2-induced ACTH secretion. Furthermore, the inhibition of ERK and p38 significantly reduced cAMP synthesis induced by CRH but not by GHRP-2. Thus, CRH activates ACTH production through ERK and p38 pathways in addition to the cAMP-PKA pathway, which is also activated downstream of MAPK. On the other hand, GHRP-2-induced ACTH production was predominantly linked to the cAMP-PKA pathway. Moreover, CRH and GHRP-2 upregulated BMP receptor signaling, while BMP-4, CRH and GHRP-2 had no significant effect on the expression level of GHSR. In addition, GHRP-2 suppressed the expression of Smad7, which is an inhibitor of the BMP-Smad1/5/8 pathway. Collectively, the results revealed a functional interaction between GHRP-2 and BMP signaling, in which endogenous BMP may act as an autoregulatory system in controlling ACTH production.
KW - Adrenocorticotropin
KW - Bone morphogenetic protein
KW - Corticotrope
KW - Corticotropin-releasing hormone
KW - Growth hormone releasing peptide
KW - Mitogen-activated protein kinase
UR - http://www.scopus.com/inward/record.url?scp=84860397544&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860397544&partnerID=8YFLogxK
U2 - 10.1016/j.mce.2011.06.016
DO - 10.1016/j.mce.2011.06.016
M3 - Article
C2 - 21742013
AN - SCOPUS:84860397544
VL - 344
SP - 41
EP - 50
JO - Molecular and Cellular Endocrinology
JF - Molecular and Cellular Endocrinology
SN - 0303-7207
IS - 1-2
ER -