Formation of clay minerals and exhumation of lower-crustal rocks at Atlantis Massif, Mid-Atlantic Ridge

Toshio Nozaka, Patricia Fryer, Muriel Andreani

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Low-temperature alteration products in gabbros from the ocean floor have significant implications for incipient processes of seawater-rock interaction and exhumation tectonics of the lower-crustal rocks. In this paper we report mode of occurrence and mineralogical characteristics of clay minerals in gabbroic rocks recovered from Integrated Ocean Drilling Program (IODP) Hole U1309D at an oceanic core complex, Atlantis Massif, Mid-Atlantic Ridge at 30°N. The clay minerals were identified by optical microscope, electron microprobe, Raman spectrometer, and transmission electron microscope as mainly composed of mixed-layer saponite-talc, saponite, and vermiculite. They are characteristically rich in iron that is significantly oxidized and distributed into the tetrahedral site, suggesting a relatively high-temperature condition for oxidation. They are restricted to domains near the contacts between olivine and talc or form pseudomorphs after olivine near microcracks filled with zeolite or clay minerals. These facts suggest the infiltration of oxidative seawater and reactions to variable fluid/rock ratios at variable temperatures. Close association of vermiculite with microcracks radiated from serpentinized olivine suggests that the deep infiltration of seawater at an off-axis region was caused by fracturing resulting from serpentinization and enhanced by relatively abundant olivine-rich lithology at Atlantis Massif. Compared with gabbroic rocks of an oceanic core complex at ultraslow-spreading ridge (ODP Hole 735B), those of Atlantis Massif substantially lack mixed-layer smectite-chlorite. Mixed-layer smectite-chlorite is a product of prehniteactinolite to greenschist facies alteration and looks to preserve a record of ambient thermal structure through which the massif passed on rising to a shallow level. The absence of pervasive formation of mixed-layer smectite-chlorite under relatively reducing conditions suggests low permeability and/or limited fluid-rock reactions on the way to shallow levels. From the observation and consideration of the characteristics of clay minerals, sequence and distribution of static alteration related to fracturing, original lithology, and tectonic settings of the oceanic core complexes, we conclude that Atlantis Massif was more rapidly exhumed to the oxidative subseafloor environment than Atlantis Bank. The difference of exhumation rate possibly reflected either the disparity in spreading rate between the whole ridge systems or regional variation of exhumation tectonics between the two oceanic core complexes.

Original languageEnglish
Article numberQ11005
JournalGeochemistry, Geophysics, Geosystems
Volume9
Issue number11
DOIs
Publication statusPublished - Nov 2008

Fingerprint

Clay minerals
exhumation
clays
clay mineral
ridges
Rocks
minerals
rocks
olivine
mixed layer
Tectonics
montmorillonite
Seawater
rock
vermiculite
smectite
Talc
chlorite
saponite
tectonics

Keywords

  • Atlantis massif
  • Clay mineral
  • Exhumation
  • Gabbro
  • Mid-Atlantic ridge
  • Oceanic core complex

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Cite this

Formation of clay minerals and exhumation of lower-crustal rocks at Atlantis Massif, Mid-Atlantic Ridge. / Nozaka, Toshio; Fryer, Patricia; Andreani, Muriel.

In: Geochemistry, Geophysics, Geosystems, Vol. 9, No. 11, Q11005, 11.2008.

Research output: Contribution to journalArticle

@article{f1104b16cf854262af8aa7943381264d,
title = "Formation of clay minerals and exhumation of lower-crustal rocks at Atlantis Massif, Mid-Atlantic Ridge",
abstract = "Low-temperature alteration products in gabbros from the ocean floor have significant implications for incipient processes of seawater-rock interaction and exhumation tectonics of the lower-crustal rocks. In this paper we report mode of occurrence and mineralogical characteristics of clay minerals in gabbroic rocks recovered from Integrated Ocean Drilling Program (IODP) Hole U1309D at an oceanic core complex, Atlantis Massif, Mid-Atlantic Ridge at 30°N. The clay minerals were identified by optical microscope, electron microprobe, Raman spectrometer, and transmission electron microscope as mainly composed of mixed-layer saponite-talc, saponite, and vermiculite. They are characteristically rich in iron that is significantly oxidized and distributed into the tetrahedral site, suggesting a relatively high-temperature condition for oxidation. They are restricted to domains near the contacts between olivine and talc or form pseudomorphs after olivine near microcracks filled with zeolite or clay minerals. These facts suggest the infiltration of oxidative seawater and reactions to variable fluid/rock ratios at variable temperatures. Close association of vermiculite with microcracks radiated from serpentinized olivine suggests that the deep infiltration of seawater at an off-axis region was caused by fracturing resulting from serpentinization and enhanced by relatively abundant olivine-rich lithology at Atlantis Massif. Compared with gabbroic rocks of an oceanic core complex at ultraslow-spreading ridge (ODP Hole 735B), those of Atlantis Massif substantially lack mixed-layer smectite-chlorite. Mixed-layer smectite-chlorite is a product of prehniteactinolite to greenschist facies alteration and looks to preserve a record of ambient thermal structure through which the massif passed on rising to a shallow level. The absence of pervasive formation of mixed-layer smectite-chlorite under relatively reducing conditions suggests low permeability and/or limited fluid-rock reactions on the way to shallow levels. From the observation and consideration of the characteristics of clay minerals, sequence and distribution of static alteration related to fracturing, original lithology, and tectonic settings of the oceanic core complexes, we conclude that Atlantis Massif was more rapidly exhumed to the oxidative subseafloor environment than Atlantis Bank. The difference of exhumation rate possibly reflected either the disparity in spreading rate between the whole ridge systems or regional variation of exhumation tectonics between the two oceanic core complexes.",
keywords = "Atlantis massif, Clay mineral, Exhumation, Gabbro, Mid-Atlantic ridge, Oceanic core complex",
author = "Toshio Nozaka and Patricia Fryer and Muriel Andreani",
year = "2008",
month = "11",
doi = "10.1029/2008GC002207",
language = "English",
volume = "9",
journal = "Geochemistry, Geophysics, Geosystems",
issn = "1525-2027",
publisher = "American Geophysical Union",
number = "11",

}

TY - JOUR

T1 - Formation of clay minerals and exhumation of lower-crustal rocks at Atlantis Massif, Mid-Atlantic Ridge

AU - Nozaka, Toshio

AU - Fryer, Patricia

AU - Andreani, Muriel

PY - 2008/11

Y1 - 2008/11

N2 - Low-temperature alteration products in gabbros from the ocean floor have significant implications for incipient processes of seawater-rock interaction and exhumation tectonics of the lower-crustal rocks. In this paper we report mode of occurrence and mineralogical characteristics of clay minerals in gabbroic rocks recovered from Integrated Ocean Drilling Program (IODP) Hole U1309D at an oceanic core complex, Atlantis Massif, Mid-Atlantic Ridge at 30°N. The clay minerals were identified by optical microscope, electron microprobe, Raman spectrometer, and transmission electron microscope as mainly composed of mixed-layer saponite-talc, saponite, and vermiculite. They are characteristically rich in iron that is significantly oxidized and distributed into the tetrahedral site, suggesting a relatively high-temperature condition for oxidation. They are restricted to domains near the contacts between olivine and talc or form pseudomorphs after olivine near microcracks filled with zeolite or clay minerals. These facts suggest the infiltration of oxidative seawater and reactions to variable fluid/rock ratios at variable temperatures. Close association of vermiculite with microcracks radiated from serpentinized olivine suggests that the deep infiltration of seawater at an off-axis region was caused by fracturing resulting from serpentinization and enhanced by relatively abundant olivine-rich lithology at Atlantis Massif. Compared with gabbroic rocks of an oceanic core complex at ultraslow-spreading ridge (ODP Hole 735B), those of Atlantis Massif substantially lack mixed-layer smectite-chlorite. Mixed-layer smectite-chlorite is a product of prehniteactinolite to greenschist facies alteration and looks to preserve a record of ambient thermal structure through which the massif passed on rising to a shallow level. The absence of pervasive formation of mixed-layer smectite-chlorite under relatively reducing conditions suggests low permeability and/or limited fluid-rock reactions on the way to shallow levels. From the observation and consideration of the characteristics of clay minerals, sequence and distribution of static alteration related to fracturing, original lithology, and tectonic settings of the oceanic core complexes, we conclude that Atlantis Massif was more rapidly exhumed to the oxidative subseafloor environment than Atlantis Bank. The difference of exhumation rate possibly reflected either the disparity in spreading rate between the whole ridge systems or regional variation of exhumation tectonics between the two oceanic core complexes.

AB - Low-temperature alteration products in gabbros from the ocean floor have significant implications for incipient processes of seawater-rock interaction and exhumation tectonics of the lower-crustal rocks. In this paper we report mode of occurrence and mineralogical characteristics of clay minerals in gabbroic rocks recovered from Integrated Ocean Drilling Program (IODP) Hole U1309D at an oceanic core complex, Atlantis Massif, Mid-Atlantic Ridge at 30°N. The clay minerals were identified by optical microscope, electron microprobe, Raman spectrometer, and transmission electron microscope as mainly composed of mixed-layer saponite-talc, saponite, and vermiculite. They are characteristically rich in iron that is significantly oxidized and distributed into the tetrahedral site, suggesting a relatively high-temperature condition for oxidation. They are restricted to domains near the contacts between olivine and talc or form pseudomorphs after olivine near microcracks filled with zeolite or clay minerals. These facts suggest the infiltration of oxidative seawater and reactions to variable fluid/rock ratios at variable temperatures. Close association of vermiculite with microcracks radiated from serpentinized olivine suggests that the deep infiltration of seawater at an off-axis region was caused by fracturing resulting from serpentinization and enhanced by relatively abundant olivine-rich lithology at Atlantis Massif. Compared with gabbroic rocks of an oceanic core complex at ultraslow-spreading ridge (ODP Hole 735B), those of Atlantis Massif substantially lack mixed-layer smectite-chlorite. Mixed-layer smectite-chlorite is a product of prehniteactinolite to greenschist facies alteration and looks to preserve a record of ambient thermal structure through which the massif passed on rising to a shallow level. The absence of pervasive formation of mixed-layer smectite-chlorite under relatively reducing conditions suggests low permeability and/or limited fluid-rock reactions on the way to shallow levels. From the observation and consideration of the characteristics of clay minerals, sequence and distribution of static alteration related to fracturing, original lithology, and tectonic settings of the oceanic core complexes, we conclude that Atlantis Massif was more rapidly exhumed to the oxidative subseafloor environment than Atlantis Bank. The difference of exhumation rate possibly reflected either the disparity in spreading rate between the whole ridge systems or regional variation of exhumation tectonics between the two oceanic core complexes.

KW - Atlantis massif

KW - Clay mineral

KW - Exhumation

KW - Gabbro

KW - Mid-Atlantic ridge

KW - Oceanic core complex

UR - http://www.scopus.com/inward/record.url?scp=72449198534&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=72449198534&partnerID=8YFLogxK

U2 - 10.1029/2008GC002207

DO - 10.1029/2008GC002207

M3 - Article

AN - SCOPUS:72449198534

VL - 9

JO - Geochemistry, Geophysics, Geosystems

JF - Geochemistry, Geophysics, Geosystems

SN - 1525-2027

IS - 11

M1 - Q11005

ER -