Finding and quantitative evaluation of minute flaws on metal surface using hairline

Jianing Zhu, Yasushi Mae, Mamoru Minami

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

A method to detect minute flaws on metal parts is proposed to remove defective parts before assembling in a factory. The input grayscale images of metal parts are directly used to recognize flaws without any image conversion to shorten recognition time. The recognition problem to find flaws and detect their position on the metal parts is converted to another problem that searches for the maximum peak and the variables producing the peak. Then, the recognition problem can be treated as an optimization problem, and this conversion allows us to utilize high genetic algorithm performances in optimization. The effectiveness and problems of the proposed method are studied on the standing points of recognition speed and quantitative recognition ability. Based on the analysis, we furthermore improved our system to increase the flaw detection rate; the lighting direction was changed to And the best lighting condition that can emphasize the contrast between the metal surface and the flaw by using the reflection character of the hairline on the metal, which is resulted by a polishing process.

Original languageEnglish
Pages (from-to)1420-1429
Number of pages10
JournalIEEE Transactions on Industrial Electronics
Volume54
Issue number3
DOIs
Publication statusPublished - Jun 2007
Externally publishedYes

Keywords

  • Genetic algorithm (GA)
  • Metal surface inspection
  • Model-based matching

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Finding and quantitative evaluation of minute flaws on metal surface using hairline'. Together they form a unique fingerprint.

Cite this