Face-sharing heterotrinuclear MII-LnIII-M II (M = Mn, Fe, Co, Zn; Ln = La, Gd, Tb, Dy) complexes: Synthesis, structures, and magnetic properties

Tomoka Yamaguchi, Jean Pierre Costes, Yukana Kishima, Masaaki Kojima, Yukinari Sunatsuki, Nicolas Bréfuel, Jean Pierre Tuchagues, Laure Vendier, Wolfgang Wernsdorfer

Research output: Contribution to journalArticlepeer-review

167 Citations (Scopus)


Trinuclear linear 3d-4f-3d complexes (3d = MnII, Fe II, CoII, ZnII and 4f = LaIII, GdIII, TbIII, DyIII) were prepared by using a tripodal nonadentate Schiff base ligand, N,N',N"-tris(2-hydroxy-3- methoxybenzilidene)-2-(aminomethyl)-2-methyl-1,3-propanediamine. The structural determinations showed that in these complexes two distorted trigonal prismatic transition metal complexes of identical chirality are assembled through 4f cations. The Mn and Fe entities crystallize in the chiral space group P2 12121 as pure enantiomers; the cobalt complexes exhibit a less straightforward behavior. All Mn, Fe, and Co complexes experience MII-LnIII ferromagnetic interactions. The Mn-Gd interaction is weak (0.08 cm-1) in comparison to the Fe-Gd (0.69 cm-1) and Co-Gd (0.52 cm-1) ones while the single ion zero field splitting (ZFS) term D is larger for the Fe complexes (5.7 cm -1) than for the cobalt ones. The cobalt complexes behave as single-molecules magnets (SMMs) with large magnetization hysteresis loops, as a consequence of the particularly slow magnetic relaxation characterizing these trinuclear molecules. Such large hysteresis loops, which are observed for the first time in Co-Ln complexes, confirm that quantum tunnelling of the magnetization does not operate in the Co-Gd-Co complex.

Original languageEnglish
Pages (from-to)9125-9135
Number of pages11
JournalInorganic Chemistry
Issue number20
Publication statusPublished - Oct 18 2010

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Face-sharing heterotrinuclear M<sup>II</sup>-Ln<sup>III</sup>-M <sup>II</sup> (M = Mn, Fe, Co, Zn; Ln = La, Gd, Tb, Dy) complexes: Synthesis, structures, and magnetic properties'. Together they form a unique fingerprint.

Cite this