Extracellular vesicles of P. gingivalis-infected macrophages induce lung injury

Kayo Yoshida, Kaya Yoshida, Natsumi Fujiwara, Mariko Seyama, Kisho Ono, Hotaka Kawai, Jiajie Guo, Ziyi Wang, Yao Weng, Yaqiong Yu, Yoko Uchida-Fukuhara, Mika Ikegame, Akira Sasaki, Hitoshi Nagatsuka, Hiroshi Kamioka, Hirohiko Okamura, Kazumi Ozaki

Research output: Contribution to journalArticlepeer-review

Abstract

Periodontal diseases are common inflammatory diseases that are induced by infection with periodontal bacteria such as Porphyromonas gingivalis (Pg). The association between periodontal diseases and many types of systemic diseases has been demonstrated; the term “periodontal medicine” is used to describe how periodontal infection/inflammation may impact extraoral health. However, the molecular mechanisms by which the factors produced in the oral cavity reach multiple distant organs and impact general health have not been elucidated. Extracellular vesicles (EVs) are nano-sized spherical structures secreted by various types of cells into the tissue microenvironment, and influence pathophysiological conditions by delivering their cargo. However, a detailed understanding of the effect of EVs on periodontal medicine is lacking. In this study, we investigated whether EVs derived from Pg-infected macrophages reach distant organs in mice and influence the pathophysiological status. EVs were isolated from human macrophages, THP-1 cells, infected with Pg. We observed that EVs from Pg-infected THP-1 cells (Pg-inf EVs) contained abundant core histone proteins such as histone H3 and translocated to the lungs, liver, and kidneys of mice. Pg-inf EVs also induced pulmonary injury, including edema, vascular congestion, inflammation, and collagen deposition causing alveoli destruction. The Pg-inf EVs or the recombinant histone H3 activated the NF-κB pathway, leading to increase in the levels of pro-inflammatory cytokines in human lung epithelial A549 cells. Our results suggest a possible mechanism by which EVs produced in periodontal diseases contribute to the progression of periodontal medicine.

Original languageEnglish
Article number166236
JournalBiochimica et Biophysica Acta - Molecular Basis of Disease
Volume1867
Issue number11
DOIs
Publication statusPublished - Nov 1 2021

Keywords

  • Animal experimentation
  • Epithelial cells
  • Infection
  • Inflammation
  • Lung diseases
  • Periodontal diseases

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Extracellular vesicles of P. gingivalis-infected macrophages induce lung injury'. Together they form a unique fingerprint.

Cite this