TY - JOUR
T1 - EXAFS Study of Molten V2O6
AU - Miyake, Michihiro
AU - Suzuki, Takashi
AU - Okuno, Masayuki
AU - Marumo, Fumiyuki
PY - 1982
Y1 - 1982
N2 - The coordination numbers of cations are usually not more than 4 in oxide glasses such as GeO2, SiO2, As2O3, P2O6, B2O3, and so on. Though V2O5 crystals have a layer structure consisted of VO6 pyramids, V2O5 is successfully transformed into a noncrystalline solid from the melt by use of the splat-quenching technique. Therefore, it is significant to examine the coodination number of the vanadium atoms in molten V2O5. The EXAFS (extended X-ray absorption fine structure) of the vanadium atoms above its K-absorption edge has been measured for molten V2O5 at 750°C using the crystalline V2O5 as a reference material. By the Fourier transform, the V-O bond lengthes were determined to be 1.60 and 1.90Å in crystalline state and 1.80Å in molten state. The results of the former were in good agreements with those obtained through the crystal structure analysis. The coodination number, bond length, and Debye-Waller factor in molten state were further examined by least-squares calculation, using the coefficients of the phase shift and amplitude functions estimated from EXAFS spectrum of the crystal. By the parameter fitting method, the V-O bond length was determined to be 1.818±0.003Å and the coordination number of the vanadium atoms was found to be 4. 8±0.2. On the other hand, the mean V-O bond length and the coodination number of the vanadium atoms are 1.828 Å and 5.0 in the crystal, respectively. The results of EXAFS analysis showed that the values in the melt are close to those in the crystal.
AB - The coordination numbers of cations are usually not more than 4 in oxide glasses such as GeO2, SiO2, As2O3, P2O6, B2O3, and so on. Though V2O5 crystals have a layer structure consisted of VO6 pyramids, V2O5 is successfully transformed into a noncrystalline solid from the melt by use of the splat-quenching technique. Therefore, it is significant to examine the coodination number of the vanadium atoms in molten V2O5. The EXAFS (extended X-ray absorption fine structure) of the vanadium atoms above its K-absorption edge has been measured for molten V2O5 at 750°C using the crystalline V2O5 as a reference material. By the Fourier transform, the V-O bond lengthes were determined to be 1.60 and 1.90Å in crystalline state and 1.80Å in molten state. The results of the former were in good agreements with those obtained through the crystal structure analysis. The coodination number, bond length, and Debye-Waller factor in molten state were further examined by least-squares calculation, using the coefficients of the phase shift and amplitude functions estimated from EXAFS spectrum of the crystal. By the parameter fitting method, the V-O bond length was determined to be 1.818±0.003Å and the coordination number of the vanadium atoms was found to be 4. 8±0.2. On the other hand, the mean V-O bond length and the coodination number of the vanadium atoms are 1.828 Å and 5.0 in the crystal, respectively. The results of EXAFS analysis showed that the values in the melt are close to those in the crystal.
UR - http://www.scopus.com/inward/record.url?scp=85008550426&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85008550426&partnerID=8YFLogxK
U2 - 10.1246/nikkashi.1982.905
DO - 10.1246/nikkashi.1982.905
M3 - Article
AN - SCOPUS:85008550426
VL - 1982
SP - 905
EP - 909
JO - Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal
JF - Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal
SN - 0369-4577
IS - 6
ER -