Abstract
By applying measurements of the dielectric constants and relative length changes to the dimerized molecular conductor κ-(BEDT-TTF)2Hg(SCN)2Cl, we provide evidence for order-disorder type electronic ferroelectricity that is driven by the charge order within the (BEDT-TTF)2 dimers and stabilized by a coupling to the anions. According to our density functional theory calculations, this material is characterized by a moderate strength of dimerization. This system thus bridges the gap between strongly dimerized materials, often approximated as dimer-Mott systems at 1/2 filling, and nondimerized or weakly dimerized systems at 1/4 filling, exhibiting a charge order. Our results indicate that intradimer charge degrees of freedom are of particular importance in correlated κ-(BEDT-TTF)2X salts and can create novel states, such as electronically driven multiferroicity or charge-order-induced quasi-one-dimensional spin liquids.
Original language | English |
---|---|
Article number | 247601 |
Journal | Physical Review Letters |
Volume | 120 |
Issue number | 24 |
DOIs | |
Publication status | Published - Jun 14 2018 |
ASJC Scopus subject areas
- Physics and Astronomy(all)
Access to Document
Fingerprint Dive into the research topics of 'Evidence for Electronically Driven Ferroelectricity in a Strongly Correlated Dimerized BEDT-TTF Molecular Conductor'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Evidence for Electronically Driven Ferroelectricity in a Strongly Correlated Dimerized BEDT-TTF Molecular Conductor. / Gati, Elena; Fischer, Jonas K.H.; Lunkenheimer, Peter; Zielke, David; Köhler, Sebastian; Kolb, Felizitas; Von Nidda, Hans Albrecht Krug; Winter, Stephen M.; Schubert, Harald; Schlueter, John A.; Jeschke, Harald Olaf; Valentí, Roser; Lang, Michael.
In: Physical Review Letters, Vol. 120, No. 24, 247601, 14.06.2018.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Evidence for Electronically Driven Ferroelectricity in a Strongly Correlated Dimerized BEDT-TTF Molecular Conductor
AU - Gati, Elena
AU - Fischer, Jonas K.H.
AU - Lunkenheimer, Peter
AU - Zielke, David
AU - Köhler, Sebastian
AU - Kolb, Felizitas
AU - Von Nidda, Hans Albrecht Krug
AU - Winter, Stephen M.
AU - Schubert, Harald
AU - Schlueter, John A.
AU - Jeschke, Harald Olaf
AU - Valentí, Roser
AU - Lang, Michael
N1 - Funding Information: Clear evidence is provided for an order-disorder type ferroelectric state in dimerized κ - ( ET ) 2 Hg ( SCN ) 2 Cl [42] , driven by charge order within the ( ET ) 2 dimers and stabilized by a coupling to the anions. According to our ab initio density functional theory calculations, this material is characterized by a moderate strength of dimerization t 1 / t ′ ∼ 3 . Our results highlight the role of intradimer degrees of freedom in dimerized ( ET ) 2 X materials in promoting intriguing states. Besides the possibility for electronically driven multiferroicity, for the present material, we propose that the charge order in the presence of a strong frustration may induce a quasi-1D spin-liquid state as a consequence of dimensional reduction. This work was supported by the Deutsche Forschungsgemeinschaft through the Transregional Collaborative Research Centers TR49 and TRR 80. J. A. S. acknowledges support from the Independent Research and Development program from the NSF while working at the Foundation. We thank Ryui Kaneko for theoretical input, and Mamoun Hemmida, Martin Dressel, and Tomislav Ivek for useful discussions of the magnetic properties. [1] 1 N. Ikeda , H. Ohsumi , K. Ohwada , K. Ishii , T. Inami , K. Kakurai , Y. Murakami , K. Yoshii , S. Mori , Y. Horibe , Nature (London) 436 , 1136 ( 2005 ). NATUAS 0028-0836 10.1038/nature04039 [2] 2 J. van den Brink and D. I. Khomskii , J. Phys. Condens. Matter 20 , 434217 ( 2008 ). JCOMEL 0953-8984 10.1088/0953-8984/20/43/434217 [3] 3 K. Yamamoto , A. A. Kowalska , and K. Yakushi , Appl. Phys. Lett. 96 , 122901 ( 2010 ). APPLAB 0003-6951 10.1063/1.3327810 [4] 4 M. Naka and S. Ishihara , J. Phys. Soc. Jpn. 79 , 063707 ( 2010 ). JUPSAU 0031-9015 10.1143/JPSJ.79.063707 [5] 5 S. Ishihara , J. Phys. Soc. Jpn. 79 , 011010 ( 2010 ). JUPSAU 0031-9015 10.1143/JPSJ.79.011010 [6] 6 J. M. Tranquada , B. J. Sternlieb , J. D. Axe , Y. Nakamura , and S. Uchida , Nature (London) 375 , 561 ( 1995 ). NATUAS 0028-0836 10.1038/375561a0 [7] 7 S. Mori , C. H. Chen , and S.-W. Cheong , Nature (London) 392 , 473 ( 1998 ). NATUAS 0028-0836 10.1038/33105 [8] 8 D. S. Chow , F. Zamborszky , B. Alavi , D. J. Tantillo , A. Baur , C. A. Merlic , and S. E. Brown , Phys. Rev. Lett. 85 , 1698 ( 2000 ). PRLTAO 0031-9007 10.1103/PhysRevLett.85.1698 [9] 9 H. Mori , S. Tanaka , and T. Mori , Phys. Rev. B 57 , 12023 ( 1998 ). PRBMDO 0163-1829 10.1103/PhysRevB.57.12023 [10] 10 K. Kuroki , Sci. Technol. Adv. Mater. 10 , 024312 ( 2009 ). STAMCV 1878-5514 10.1088/1468-6996/10/2/024312 [11] 11 F. Kagawa , T. Sato , K. Miyagawa , K. Kanoda , Y. Tokura , K. Kobayashi , R. Kumai , and Y. Murakami , Nat. Phys. 9 , 419 ( 2013 ). NPAHAX 1745-2473 10.1038/nphys2642 [12] 12 S. Sasaki , K. Hashimoto , R. Kobayashi , K. Itoh , S. Iguchi , Y. Nishio , Y. Ikemoto , T. Moriwaki , N. Yoneyama , M. Watanabe , Science 357 , 1381 ( 2017 ). SCIEAS 0036-8075 10.1126/science.aal3120 [13] 13 P. Monceau , F. Y. Nad , and S. Brazovskii , Phys. Rev. Lett. 86 , 4080 ( 2001 ). PRLTAO 0031-9007 10.1103/PhysRevLett.86.4080 [14] 14 F. Nad and P. Monceau , J. Phys. Soc. Jpn. 75 , 051005 ( 2006 ). JUPSAU 0031-9015 10.1143/JPSJ.75.051005 [15] 15 P. Lunkenheimer , B. Hartmann , M. Lang , J. Müller , D. Schweitzer , S. Krohns , and A. Loidl , Phys. Rev. B 91 , 245132 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.245132 [16] 16 H. Seo , J. Phys. Soc. Jpn. 69 , 805 ( 2000 ). JUPSAU 0031-9015 10.1143/JPSJ.69.805 [17] 17 T. Takahashi , Y. Nogami , and K. Yakushi , J. Phys. Soc. Jpn. 75 , 051008 ( 2006 ). JUPSAU 0031-9015 10.1143/JPSJ.75.051008 [18] 18 H. Seo , J. Merino , H. Yoshioka , and M. Ogata , J. Phys. Soc. Jpn. 75 , 051009 ( 2006 ). JUPSAU 0031-9015 10.1143/JPSJ.75.051009 [19] 19 K. Yamamoto , S. Iwai , S. Boyko , A. Kashiwazaki , F. Hiramatsu , C. Okabe , N. Nishi , and K. Yakushi , J. Phys. Soc. Jpn. 77 , 074709 ( 2008 ). JUPSAU 0031-9015 10.1143/JPSJ.77.074709 [20] 20 M. Abdel-Jawad , I. Terasaki , T. Sasaki , N. Yoneyama , N. Kobayashi , Y. Uesu , and C. Hotta , Phys. Rev. B 82 , 125119 ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.82.125119 [21] 21 S. Iguchi , S. Sasaki , N. Yoneyama , H. Taniguchi , T. Nishizaki , and T. Sasaki , Phys. Rev. B 87 , 075107 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.87.075107 [22] 22 H. Kino and H. Fukuyama , J. Phys. Soc. Jpn. 64 , 2726 ( 1995 ). JUPSAU 0031-9015 10.1143/JPSJ.64.2726 [23] 23 K. Kanoda , Hyperfine Interact. 104 , 235 ( 1997 ). HYINDN 0304-3843 10.1023/A:1012696314318 [24] 24 B. J. Powell and R. H. McKenzie , Rep. Prog. Phys. 74 , 056501 ( 2011 ). RPPHAG 0034-4885 10.1088/0034-4885/74/5/056501 [25] 25 P. Lunkenheimer , J. Müller , S. Krohns , F. Schrettle , A. Loidl , B. Hartmann , R. Rommel , M. de Souza , C. Hotta , J. Schlueter , Nat. Mater. 11 , 755 ( 2012 ). NMAACR 1476-1122 10.1038/nmat3400 [26] 26 M. Lang , P. Lunkenheimer , J. Müller , A. Loidl , B. Hartmann , N. H. Hoang , E. Gati , H. Schubert , and J. A. Schlueter , IEEE Trans. Magn. 50 , 2700107 ( 2014 ). IEMGAQ 0018-9464 10.1109/TMAG.2013.2296333 [27] 27 P. Lunkenheimer and A. Loidl , J. Phys. Condens. Matter 27 , 373001 ( 2015 ). JCOMEL 0953-8984 10.1088/0953-8984/27/37/373001 [28] 28 K. Miyagawa , A. Kawamoto , Y. Nakazawa , and K. Kanoda , Phys. Rev. Lett. 75 , 1174 ( 1995 ). PRLTAO 0031-9007 10.1103/PhysRevLett.75.1174 [29] 29 C. Hotta , Phys. Rev. B 82 , 241104 ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.82.241104 [30] 30 R. Clay , H. Li , and S. Mazumdar , Physica (Amsterdam) 405B , S253 ( 2010 ). PHYBE3 0921-4526 10.1016/j.physb.2009.11.091 [31] 31 H. Gomi , M. Ikenaga , Y. Hiragi , D. Segawa , A. Takahashi , T. J. Inagaki , and M. Aihara , Phys. Rev. B 87 , 195126 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.87.195126 [32] 32 R. Kaneko , L. F. Tocchio , R. Valentí , and F. Becca , New J. Phys. 19 , 103033 ( 2017 ). NJOPFM 1367-2630 10.1088/1367-2630/aa887b [33] 33 K. Sedlmeier , S. Elsässer , D. Neubauer , R. Beyer , D. Wu , T. Ivek , and S. Tomić , J. A. Schlueter , and M. Dressel , Phys. Rev. B 86 , 245103 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.86.245103 [34] 34 S. Tomić , M. Pinterić , T. Ivek , K. Sedlmeier , R. Beyer , D. Wu , J. A. Schlueter , D. Schweitzer , and M. Dressel , J. Phys. Condens. Matter 25 , 436004 ( 2013 ). JCOMEL 0953-8984 10.1088/0953-8984/25/43/436004 [35] 35 M. Pinterić , P. Lazić , A. Pustogow , T. Ivek , M. Kuveždić , O. Milat , B. Gumhalter , M. Basletić , M. Čulo , B. Korin-Hamzić , Phys. Rev. B 94 , 161105 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.94.161105 [36] 36 N. Drichko , R. Beyer , E. Rose , M. Dressel , J. A. Schlueter , S. A. Turunova , E. I. Zhilyaeva , and R. N. Lyubovskaya , Phys. Rev. B 89 , 075133 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.89.075133 [37] 37 N. Hassan , S. Cunningham , M. Mourigal , E. I. Zhilyaeva , S. A. Torunova , R. N. Lyubovskaya , and N. Drichko , arXiv:1704.04482 . [38] 38 E. Gati , M. Garst , R. S. Manna , U. Tutsch , B. Wolf , L. Bartosch , H. Schubert , T. Sasaki , J. A. Schlueter , and M. Lang , Sci. Adv. 2 , e1601646 ( 2016 ). SACDAF 2375-2548 10.1126/sciadv.1601646 [39] 39 S. V. Konovalikhin , G. V. Shilov , O. A. D’yachenko , R. N. Lyubovskaya , M. Z. Aldoshina , and R. B. Lyubovskii , Russian chemical bulletin 41 , 704 ( 1992 ). RCBUEY 1066-5285 10.1007/BF01150896 [40] 40 K. Koepernik and H. Eschrig , Phys. Rev. B 59 , 1743 ( 1999 ). PRBMDO 0163-1829 10.1103/PhysRevB.59.1743 [41] 41 J. P. Perdew , K. Burke , and M. Ernzerhof , Phys. Rev. Lett. 77 , 3865 ( 1996 ). PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865 [42] 42 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.247601 for details on the band-structure calculations, on the dielectric properties, and a discussion of the magnetic properties, which includes references [36,38,39,43–74]. [43] 43 R. Pott and R. Schefzyk , J. Phys. E 16 , 444 ( 1983 ). JPSIAE 0022-3735 10.1088/0022-3735/16/5/018 [44] 44 S. Yasin , E. Rose , M. Dumm , N. Drichko , M. Dressel , J. Schlueter , E. Zhilyaeva , S. Torunova , and R. Lyubovskaya , Physica (Amsterdam) 407B , 1689 ( 2012 ). PHYBE3 0921-4526 10.1016/j.physb.2012.01.007 [45] 45 H. Fukuyama , J. Kishine , and M. Ogata , J. Phys. Soc. Jpn. 86 , 123706 ( 2017 ). JUPSAU 0031-9015 10.7566/JPSJ.86.123706 [46] 46 H. C. Kandpal , I. Opahle , Y.-Z. Zhang , H. O. Jeschke , and R. Valentí , Phys. Rev. Lett. 103 , 067004 ( 2009 ). PRLTAO 0031-9007 10.1103/PhysRevLett.103.067004 [47] 47 D. Guterding , R. Valentí , and H. O. Jeschke , Phys. Rev. B 92 , 081109 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.92.081109 [48] 48 M. Altmeyer , R. Valentí , and H. O. Jeschke , Phys. Rev. B 91 , 245137 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.245137 [49] 49 H. Eschrig and K. Koepernik , Phys. Rev. B 80 , 104503 ( 2009 ). PRBMDO 1098-0121 10.1103/PhysRevB.80.104503 [50] 50 R. Böhmer , M. Maglione , P. Lunkenheimer , and A. Loidl , J. Appl. Phys. 65 , 901 ( 1989 ). JAPIAU 0021-8979 10.1063/1.342990 [51] 51 E. Gati , S. M. Winter , J. A. Schlueter , H. Schubert , J. Müller , and M. Lang , Phys. Rev. B 97 , 075115 ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.97.075115 [52] 52 R. Blinc and B. Žekš , Soft Modes in Ferroelectrics and Antiferroelectrics ( North-Holland , Amsterdam, 1994 ). [53] 53 F. Sandy and R. V. Jones , Phys. Rev. 168 , 481 ( 1968 ). PHRVAO 0031-899X 10.1103/PhysRev.168.481 [54] 54 Y. Takayama , K. Deguchi , and E. Nakamura , J. Phys. Soc. Jpn. 53 , 4121 ( 1984 ). JUPSAU 0031-9015 10.1143/JPSJ.53.4121 [55] 55 P. F. Sullivan and G. Seidel , Phys. Rev. 173 , 679 ( 1968 ). PHRVAO 0031-899X 10.1103/PhysRev.173.679 [56] 56 J. Müller , M. Lang , R. Helfrich , F. Steglich , and T. Sasaki , Phys. Rev. B 65 , 140509 ( 2002 ). PRBMDO 0163-1829 10.1103/PhysRevB.65.140509 [57] 57 J. Wosnitza , X. Liu , D. Schweitzer , and H. J. Keller , Phys. Rev. B 50 , 12747 ( 1994 ). PRBMDO 0163-1829 10.1103/PhysRevB.50.12747 [58] 58 P. Foury-Leylekian , S. Petit , I. Mirebeau , G. André , M. de Souza , M. Lang , E. Ressouche , A. Moradpour , and J.-P. Pouget , Phys. Rev. B 88 , 024105 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.88.024105 [59] 59 R. Świetlik , H. Grimm , D. Schweitzer , and H. J. Keller , Z. Naturforsch. A 42 , 603 ( 1987 ). [60] 60 B. Andraka , G. R. Stewart , K. D. Carlson , H. H. Wang , M. D. Vashon , and J. M. Williams , Phys. Rev. B 42 , 9963 ( 1990 ). PRBMDO 0163-1829 10.1103/PhysRevB.42.9963 [61] 61 B. Andraka , J. S. Kim , G. R. Stewart , K. D. Carlson , H. H. Wang , and J. M. Williams , Phys. Rev. B 40 , 11345 ( 1989 ). PRBMDO 0163-1829 10.1103/PhysRevB.40.11345 [62] 62 S. Katsumoto , S. ichi Kobayashi , H. Urayama , H. Yamochi , and G. Saito , J. Phys. Soc. Jpn. 57 , 3672 ( 1988 ). JUPSAU 0031-9015 10.1143/JPSJ.57.3672 [63] 63 P. Garoche , R. Brusetti , D. Jérome , and K. Bechgaard , J. Phys. (Paris), Lett. 43 , 147 ( 1982 ). JPSLBO 0302-072X 10.1051/jphyslet:01982004305014700 [64] 64 S. Barnes , Adv. Phys. 30 , 801 ( 1981 ). ADPHAH 0001-8732 10.1080/00018738100101447 [65] 65 R. Jin , M. H. Pan , X. B. He , G. Li , D. Li , R. wen Peng , J. R. Thompson , B. C. Sales , A. S. Sefat , M. A. McGuire , Supercond. Sci. Technol. 23 , 054005 ( 2010 ). SUSTEF 0953-2048 10.1088/0953-2048/23/5/054005 [66] 66 M. Heinrich , H.-A. Krug von Nidda , R. M. Eremina , A. Loidl , C. Helbig , G. Obermeier , and S. Horn , Phys. Rev. Lett. 93 , 116402 ( 2004 ). PRLTAO 0031-9007 10.1103/PhysRevLett.93.116402 [67] 67 M. Hemmida , H.-A. Krug von Nidda , B. Miksch , L. L. Samoilenko , A. Pustogow , J. Schlueter , A. Loidl , and M. Dressel , arXiv:1710.04028 . [68] 68 J. Müller , M. Lang , F. Steglich , J. A. Schlueter , A. M. Kini , U. Geiser , J. Mohtasham , R. W. Winter , G. L. Gard , T. Sasaki , Phys. Rev. B 61 , 11739 ( 2000 ). PRBMDO 0163-1829 10.1103/PhysRevB.61.11739 [69] 69 W. Kraak , U. Schaller , and R. Herrmann , Phys. Status Solidi A 85 , K183 ( 1984 ). PSSABA 1862-6300 10.1002/pssa.2210850262 [70] 70 A. Löhle , E. Rose , S. Singh , R. Beyer , E. Tafra , T. Ivek , E. I. Zhilyaeva , R. N. Lyubovskaya , and M. Dressel , J. Phys. Condens. Matter 29 , 055601 ( 2017 ). JCOMEL 0953-8984 10.1088/1361-648X/29/5/055601 [71] 71 Y. Kurosaki , Y. Shimizu , K. Miyagawa , K. Kanoda , and G. Saito , Phys. Rev. Lett. 95 , 177001 ( 2005 ). PRLTAO 0031-9007 10.1103/PhysRevLett.95.177001 [72] 72 P. Limelette , P. Wzietek , S. Florens , A. Georges , T. A. Costi , C. Pasquier , D. Jérome , C. Mézière , and P. Batail , Phys. Rev. Lett. 91 , 016401 ( 2003 ). PRLTAO 0031-9007 10.1103/PhysRevLett.91.016401 [73] 73 S. Lefebvre , P. Wzietek , S. Brown , C. Bourbonnais , D. Jérome , C. Mézière , M. Fourmigué , and P. Batail , Phys. Rev. Lett. 85 , 5420 ( 2000 ). PRLTAO 0031-9007 10.1103/PhysRevLett.85.5420 [74] 74 C. Strack , C. Akinci , V. Pashchenko , B. Wolf , E. Uhrig , W. Assmus , M. Lang , J. Schreuer , L. Wiehl , J. A. Schlueter , Phys. Rev. B 72 , 054511 ( 2005 ). PRBMDO 1098-0121 10.1103/PhysRevB.72.054511 [75] The absence of any indications for a displacive-type of ferroelectricity implies that the dielectric response can be assigned solely to the electric dipoles within the ET layers without any contribution from the alternating anion-cation system. [76] 76 M. E. Lines and A. M. Glass , Principles and Applications of Ferroelectrics and Related Materials ( Clarendon Press , Oxford, 1977 ). [77] ε = C / ( T - T C W ) = ( 1 / 3 ε 0 ) n [ p 2 / k B ( T - T C W ) ] [ 1 + ( T C W / C ) ( ε L - 1 ) ] with C the Curie constant, T C W the Curie-Weiss temperature, ε 0 the dielectric permittivity of vacuum, n the dipole density, p the dipole moment, k B the Boltzmann constant, and ε L the low-temperature dielectric constant. [78] 78 W. P. Mason and B. T. Matthias , Phys. Rev. 74 , 1622 ( 1948 ). PHRVAO 0031-899X 10.1103/PhysRev.74.1622 [79] 79 C. J. Johnson , Appl. Phys. Lett. 7 , 221 ( 1965 ). APPLAB 0003-6951 10.1063/1.1754387 [80] 80 K. Gesi , J. Phys. Soc. Jpn. 28 , 395 ( 1970 ). JUPSAU 0031-9015 10.1143/JPSJ.28.395 [81] 81 T. Ivek , R. Beyer , S. Badalov , and M. Člo , S. Tomić , J. A. Schlueter , E. I. Zhilyaeva , R. N. Lyubovskaya , and M. Dressel , Phys. Rev. B 96 , 085116 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.96.085116 [82] 82 T. Ivek and B. Korin-Hamzić , O. Milat , S. Tomić , C. Clauss , N. Drichko , D. Schweitzer , and M. Dressel , Phys. Rev. Lett. 104 , 206406 ( 2010 ). PRLTAO 0031-9007 10.1103/PhysRevLett.104.206406 [83] 83 J. F. Scott , Ferroelectric Memories ( Springer , Berlin, 2000 ). [84] The same conclusion was drawn from the anisotropic lattice effects revealed at the CO transition in the quasi-1D ( TMTTF ) 2 X salts [85] . [85] 85 M. de Souza , P. Foury-Leylekian , A. Moradpour , J.-P. Pouget , and M. Lang , Phys. Rev. Lett. 101 , 216403 ( 2008 ). PRLTAO 0031-9007 10.1103/PhysRevLett.101.216403 [86] 86 D. Guterding , M. Altmeyer , H. O. Jeschke , and R. Valentí , Phys. Rev. B 94 , 024515 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.94.024515 [87] 87 M. Naka and S. Ishihara , Sci. Rep. 6 ( 2016 ). SRCEC3 2045-2322 10.1038/srep20781 [88] 88 O. A. Starykh and L. Balents , Phys. Rev. Lett. 98 , 077205 ( 2007 ). PRLTAO 0031-9007 10.1103/PhysRevLett.98.077205 [89] 89 P. Lemmens , G. Güntherodt , and C. Gros , Phys. Rep. 375 , 1 ( 2003 ). PRPLCM 0370-1573 10.1016/S0370-1573(02)00321-6 [90] 90 C. Hess , Eur. Phys. J. Spec. Top. 151 , 73 ( 2007 ). EPJSAC 1951-6355 10.1140/epjst/e2007-00363-8
PY - 2018/6/14
Y1 - 2018/6/14
N2 - By applying measurements of the dielectric constants and relative length changes to the dimerized molecular conductor κ-(BEDT-TTF)2Hg(SCN)2Cl, we provide evidence for order-disorder type electronic ferroelectricity that is driven by the charge order within the (BEDT-TTF)2 dimers and stabilized by a coupling to the anions. According to our density functional theory calculations, this material is characterized by a moderate strength of dimerization. This system thus bridges the gap between strongly dimerized materials, often approximated as dimer-Mott systems at 1/2 filling, and nondimerized or weakly dimerized systems at 1/4 filling, exhibiting a charge order. Our results indicate that intradimer charge degrees of freedom are of particular importance in correlated κ-(BEDT-TTF)2X salts and can create novel states, such as electronically driven multiferroicity or charge-order-induced quasi-one-dimensional spin liquids.
AB - By applying measurements of the dielectric constants and relative length changes to the dimerized molecular conductor κ-(BEDT-TTF)2Hg(SCN)2Cl, we provide evidence for order-disorder type electronic ferroelectricity that is driven by the charge order within the (BEDT-TTF)2 dimers and stabilized by a coupling to the anions. According to our density functional theory calculations, this material is characterized by a moderate strength of dimerization. This system thus bridges the gap between strongly dimerized materials, often approximated as dimer-Mott systems at 1/2 filling, and nondimerized or weakly dimerized systems at 1/4 filling, exhibiting a charge order. Our results indicate that intradimer charge degrees of freedom are of particular importance in correlated κ-(BEDT-TTF)2X salts and can create novel states, such as electronically driven multiferroicity or charge-order-induced quasi-one-dimensional spin liquids.
UR - http://www.scopus.com/inward/record.url?scp=85048630347&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048630347&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.120.247601
DO - 10.1103/PhysRevLett.120.247601
M3 - Article
C2 - 29957011
AN - SCOPUS:85048630347
VL - 120
JO - Physical Review Letters
JF - Physical Review Letters
SN - 0031-9007
IS - 24
M1 - 247601
ER -