TY - JOUR
T1 - Evaluation of reaction of primate brain to grafted PC12 cells
AU - Yoshida, Hideyuki
AU - Date, Isao
AU - Shingo, Tetsuro
AU - Fujiwara, Kenjiro
AU - Miyoshi, Yasuyuki
AU - Furuta, Tomohisa
AU - Ohmoto, Takashi
PY - 1999
Y1 - 1999
N2 - Intrastriatal implantation of polymer-encapsulated PC12 cells, which constitute a dopaminergic cell line derived from rat pheochromocytoma, has proved useful for ameliorating parkinsonian symptoms in several kinds of animals. In considering the clinical application of this technique, we should make sure that PC12 cells are rejected completely by the host immune system in case the capsule breaks. In the present study, unencapsulated PC12 cells were injected into the brain of Japanese monkeys (Macaca fuscata). Histological [hematoxylin-eosin (H and E), Nissl] and immunocytochemical [tyrosine hydroxylase (TH), and glial fibrillary acidic protein (GFAP)] analyses were performed 1, 2, 4, and 8 weeks after transplantation. Also, encapsulated PC12 cells were transplanted into the brain of another group of Japanese monkeys to investigate the host reaction to the capsule and to confirm that the encapsulated PC12 cells continue to survive in the host brain. H and E and GFAP staining were performed 2, 4, and 8 weeks after transplantation. L-DOPA and dopamine release from the explanted capsules was measured by high performance liquid chromatography. Magnetic resonance imaging was performed in both unencapsulated and encapsulated PC12 cell grafted groups. Although the xenografted unencapsulated cells formed a small cluster at 1 and 2 weeks after implantation, very few and no viable PC12 cells remained at 4 and 8 weeks, respectively. The reaction of the host towards the xenograft gradually decreased. Encapsulated PC12 cells retrieved from the host brain were found to release L-DOPA and dopamine continuously even 8 weeks after implantation. The host reaction to the PC12-loaded capsule was much weaker than that to the unencapsulated PC12 cells, and decreased with time. These results indicate that encapsulated PC12 cell transplantation is an effective and safe strategy for the treatment of Parkinson's disease.
AB - Intrastriatal implantation of polymer-encapsulated PC12 cells, which constitute a dopaminergic cell line derived from rat pheochromocytoma, has proved useful for ameliorating parkinsonian symptoms in several kinds of animals. In considering the clinical application of this technique, we should make sure that PC12 cells are rejected completely by the host immune system in case the capsule breaks. In the present study, unencapsulated PC12 cells were injected into the brain of Japanese monkeys (Macaca fuscata). Histological [hematoxylin-eosin (H and E), Nissl] and immunocytochemical [tyrosine hydroxylase (TH), and glial fibrillary acidic protein (GFAP)] analyses were performed 1, 2, 4, and 8 weeks after transplantation. Also, encapsulated PC12 cells were transplanted into the brain of another group of Japanese monkeys to investigate the host reaction to the capsule and to confirm that the encapsulated PC12 cells continue to survive in the host brain. H and E and GFAP staining were performed 2, 4, and 8 weeks after transplantation. L-DOPA and dopamine release from the explanted capsules was measured by high performance liquid chromatography. Magnetic resonance imaging was performed in both unencapsulated and encapsulated PC12 cell grafted groups. Although the xenografted unencapsulated cells formed a small cluster at 1 and 2 weeks after implantation, very few and no viable PC12 cells remained at 4 and 8 weeks, respectively. The reaction of the host towards the xenograft gradually decreased. Encapsulated PC12 cells retrieved from the host brain were found to release L-DOPA and dopamine continuously even 8 weeks after implantation. The host reaction to the PC12-loaded capsule was much weaker than that to the unencapsulated PC12 cells, and decreased with time. These results indicate that encapsulated PC12 cell transplantation is an effective and safe strategy for the treatment of Parkinson's disease.
KW - Encapsulation
KW - Nonhuman primate
KW - PC12 cells
KW - Transplantation
UR - http://www.scopus.com/inward/record.url?scp=0032878803&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032878803&partnerID=8YFLogxK
U2 - 10.1177/096368979900800413
DO - 10.1177/096368979900800413
M3 - Article
C2 - 10478724
AN - SCOPUS:0032878803
SN - 0963-6897
VL - 8
SP - 427
EP - 430
JO - Cell Transplantation
JF - Cell Transplantation
IS - 4
ER -